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Abstract. A lot of recent literature on outcome-oriented predictive process
monitoring focuses on using models from machine and deep learning. In this
literature, it is assumed the outcome labels of the historical cases are all known.
However, in some cases, the labelling of cases is incomplete or inaccurate. For
instance, you might only observe negative customer feedback, fraudulent cases
might remain unnoticed. These cases are typically present in the so-called
positive and unlabelled (PU) setting, where your data set consists of a couple
of positively labelled examples and examples which do not have a positive
label, but might still be examples of a positive outcome. In this work, we
show, using a selection of event logs from the literature, the negative impact
of mislabelling cases as negative, more specifically when using XGBoost and
LSTM neural networks. Furthermore, we show promising results on real-life
datasets mitigating this effect, by changing the loss function used by a set
of models during training to those of unbiased Positive-Unlabelled (uPU) or
non-negative Positive-Unlabelled (nnPU) learning.

Keywords: Process Mining · Predictive Process Monitoring · OOPPM ·
XGBoost · LSTM · PU learning · Label Uncertainty

1 Introduction

Outcome-Oriented Predictive Process Monitoring (OOPPM) refers to predicting
the future state (labels) of ongoing processes, using the historical cases of business
processes. Most recently, the literature in OOPPM has been focused on training
machine and deep learning models on labelled historical data. However, to the best of
our knowledge, no research has focused on training such models when the labels given
to these historical cases are incomplete, uncertain, or even wrong. Accordingly, in this
paper, a situation is investigated where part of the positive historical cases have been
unnoticed and therefore mistakenly classified as negative in the data. A situation
like this might be found when the positive label represents, e.g., detected outliers or
fraud in a loan application, or customer (dis)satisfaction through a survey (which
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might not always be filled out) for a production process [10,26]. Other examples can
be found in medicine, e.g., when trying to predict the chances of complications which
might go unnoticed, or when dealing with overall low-quality data and therefore un-
certain labels [14,10]. Other examples can be found in multi-organisational processes,
where information flow can sometimes be limited. This setting can be understood
as one-sided label noise, in which some seeming negatives are actually positive [1].
One-sided label noise is a common interpretation of positive and unlabelled (PU)
data. In this setting, data consists of positive and unlabelled instances, in which an
unlabelled example can be either positive or negative. Consequently, this field of
machine learning research is called PU learning. We focus on methods based on the
Expected Risk Minimization (ERM) in the literature of PU learning. Particularly,
we use unbiased PU learning and non-negative PU learning [7,11] because of the
state-of-the-art performance. These two methods have been successfully utilised in
other domains such as imbalanced learning [21], and graph neural networks [27].

In our experimental setup, we flip different percentages of the positive labels in
the training logs to a negative label, replicating a real-world situation with missing
positive labels. By training models on these different training sets and evaluating
their performance on the untouched test set, we can evaluate the impact of missing
positive training labels on the models’ actual performance. The models in question
are gradient boosted trees (more specifically eXtreme Gradient Boosting, known as
XGBoost or XGB) [3] and the Long Short-Term Memory neural networks (LSTM) [9].
Furthermore, we investigate the impact of replacing the binary cross-entropy loss func-
tions with functions inspired by the Positive and Unlabelled (PU) learning literature.
This can be summarised in the following hypotheses:

Hypothesis 1 (H1): Incorrectly labelling deviant (positive) behaviour as normal
(negative), can have an important impact on the (future) performance of a predictive
model.

Hypothesis 2 (H2): Using loss functions from PU-learning, the problem above can
be (partially) mitigated.

To investigate these hypotheses, our setup has been applied to a selection of nine
real-life process event logs from the literature. The rest of the paper is organised
as follows. We start by discussing some relevant related work in Section 2. Second,
Section 3 introduces essential background information, followed by an introduction
to PU learning in section 4. In Section 5, the experimental setup is described, before
introducing the data and the hyperparameter search. This is succeeded by showing
and discussing the results (Section 6). Finally, Section 7 provides a conclusion and
some possible approaches for future research. The data, results, and code used and
presented in this paper are available online1.

2 Related Work

Predictive Process Monitoring (PPM) is concerned with many tasks such as predicting
the remaining time [25], next activity [22] or the outcome of the process [24,12,4]. The
1 https://github.com/jaripeeperkorn/PU-OOPPM
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latter is also known as Outcome-Oriented Predictive Process Monitoring (OOPPM),
a field of study that predicts the final state of an incoming, incomplete case. One
of the pioneer studies in this field is [24], where they benchmark the state-of-the-art
trace bucketing techniques and sequence encoding mechanisms used for different
machine learning models. However, the use of classical machine learning models has
been superseded by an avalanche of deep learning techniques. Here, the most frequent
used predictive model in general predictive process monitoring literature has become
LSTM neural networks, initiated by [22]. The introduction of this recurrent neural
network has been motivated by the ability of this model to handle the dynamic
behaviour of high-dimensional sequential data. In recent, many other sophisticated
models have been benchmarked against this model in the field of predictive process
monitoring, such as Convolutional Neural Networks (CNN) [16] or Generative Ad-
versarial Networks (GAN) [23]. Some studies have already compared the predictive
performance of different deep learning models [18,12,15].

Nonetheless, the predictions made by the majority of these works are based on
data from past process instances, i.e. event logs, and therefore implicitly assume
that the labelling made corresponds with the ground truth. Work on incremental
predictive process monitoring [19,17] does provide a flexible alternative to deal with
the rigidity of predictive models. Moreover, these incremental learning algorithms
allow for the predictive model to deal with the variability and dynamic behaviour of
business processes (i.e. different time periods have different characteristics [17]). Other
recent work discusses a semi-supervised approach, also leveraging the power of deep
neural networks, to handle scarcely labelled process logs in an OOPPM setting [8].
However, to the best of our knowledge, none of the related works has already used
PU learning in the context of OOPPM, which incorporates that negatively labelled
instances are possibly mislabelled.

3 Preliminaries

Executed activities in a process are recorded as an event in an Event Log L. Each
event belongs to one case, indicated by its CaseID c∈C . An event e can also be
written as a tuple e=(c,a,t,d,s), with a∈A the activity (i.e. control-flow attribute)
and t the timestamp. Optionally, an event might also have event-related attributes
(payload or dynamic attributes) d= (d1,d2,...,dmd

), which are event specific and
might evolve during a case. Other attributes do not evolve during the execution of
a single case and are called case or static attributes s=(s1,s2,...,sms

). A sequence of
events belonging to one case is called a trace. The outcome y of a trace is an attribute
defined by the process owner. This attribute is often binary, indicating whether a
certain criterion has been met [24]. We use the label positive when it is met, and call
these cases positive cases. And negative cases otherwise. A prefix is part of a trace,
consisting of the first l events (with l an integer smaller than the trace length). A
prefix log L∗ contains all possible prefixes which can be extracted from all traces in L.

XGBoost is an implementation of the gradient boosting ensemble method, which
is constructed from multiple decision tree models. By adding additional trees to
correct the prediction error from the prior iteration, an efficient yet powerful classifier
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can be trained [3]. Recurrent Neural Networks (RNNs) are neural networks specifically
designed to work with sequential data by letting information flow between multiple
time steps. LSTMs are a specific variant of RNN, specifically designed to handle
long-term dependencies [9].

Both of these models rely on a proper choice of loss function for training. The
loss function is used to score the model on its performance, based on the predicted
probability p∈ [0,1] and the actual label y∈{0,1}. Formally, in the Empirical Risk
Minimisation (ERM) framework, the loss function L is utilised within the risk function
when scoring a classifier g(x):

R(g(x))=αEf+[L
+(g(x))]+(1−α)Ef−[L

−(g(x))], (1)

where L+(g) and L−(g) are the losses for positive and negative examples; Ef+ and
Ef− are the expectation over the propensity density functions of the positive f+(x)
and negative f−(x) instance space; and α is the positive class ratio or class prior
as denoted in the literature. Usually for a binary classification problem, as often
the case in OOPPM, the binary cross entropy loss function is used. The binary
cross-entropy can be calculated from a data set when L+(g(xi)) = −log(pi) and
L−(g(xi))=−log(1−pi) in Equation 1:

BCE=−
N∑
i=1

(yilog(pi)+(1−yi)log(1−pi)) (2)

4 PU Learning

Despite the popularity of binary cross-entropy in the standard classification setup in
which labels are accurate and complete, some real-world applications suffer from label
uncertainty. In such scenarios, the binary cross-entropy is no longer valid for model
learning. We focus on the PU setting in which the training data consists of only positive
and unlabelled examples; the labelled instances are always positive, but some positives
remain unlabelled. In PU learning, the label status l∈{0,1} determines if an example
is either labelled or unlabeled. Formally, we assume that the positive and unlabelled in-
stances are independent and identically distributed from the general distribution f(x):

X∼f(x)

∼αf+(x)+(1−α)f−(x) (3)
∼αcfl(x)+(1−αc)fu(x), (4)

where X refers to the set of instances and the label frequency c is the probability of a
positive example being labelled P(l=1 |y=1). The general distribution can be formu-
lated in terms of the positive distribution f+(x) and negative distribution f−(x) (see
Equation 3). In the PU setting, the general distribution consists of the labeled fl(x)
and unlabeled distribution fu(x) as shown in Equation 4. A proportion c of the positive
instances of the data set is labelled, thus, a learner can only observe a fraction αc of in-
stances with a positive label whereas the rest is unlabeled. Recent works have proposed
methods based on the ERM framework, which are currently considered state-of-the-
art [7,11,2]. These methods incorporate the information of the class prior (i.e., positive
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class ratio) to weight the PU data within the loss function. The weighting allows the em-
pirical risk from the PU data to be the same in expectation as in the fully labelled data.
From Equation 1, we can transform the loss function into the PU setting as follows:

Rupu(g(x))=αEf+[L
+(g(x))]+(1−α)Ef−[L

−(g(x))]

=αEf+[L
+(g(x))]+Ef [L

−(g(x))]−αEf+[L
−(g(x))]

=αcEfl

[1
c
(L+(g(x))−L−(g(x)))

]
+Ef [L

−(g(x))]

=αcEfl

[1
c
L+(g(x))+(1− 1

c
)L−(g(x))

]
+(1−αc)Efu[L

−(g(x))]. (5)

In the first step of Equation 5, we can substitute the term (1−α)Ef−[L
−(g(x))]

with Ef [L
−(g(x))]−αEf+[L

−(g(x))] based on Equation 3: the negative distribution
f− is the difference between the general distribution f and the positive distribution
f+. In the second step, we substitute Ef [L

−(g(x))] with αcEf [L
−(g(x))] + (1−

αc)Ef [L
−(g(x))] based on Equation 4. Now the unlabelled instances are considered

negative with a weight of 1. Also, all labelled examples are added both as positive
with weight 1

c and as negative with 1− 1
c . The method is called unbiased PU (uPU)

because the empirical risk for PU data (Equation 5) is equal in expectation to the
empirical risk when data is fully labelled (Equation 1) [7]. The uPU can be used in
modern techniques that require a convex loss function for training. However, the uPU
method presents a weakness for flexible techniques that can easily overfit: the uPU risk
estimator can provide negative empirical risks. This issue is problematic for powerful
classifiers such as XGBoost [3] or deep learning models. Thus, the non-negative PU
risk estimator is proposed that improves on uPU by adding a maximum operator [11]:

Rnnpu(g(x))=αcEfl

[
1
cL

+(g(x))
]
+max

(
0,(1−αc)Efu[L

−(g(x))]+αcEfl

[
(1− 1

c )L
−(g(x))

])
. (6)

The maximum operator in Equation 6 prevents the issue of negative empirical risks.
We can derive an appropriate loss function for PU learning that can substitute the
binary cross-entropy based on Equation 6 and Equation 5. Hence, the unbiased PU
cross-entropy and non-negative PU cross-entropy can be estimated from a data set:

uPUBCE=−
N∑
i=1

(
li

[1
c
log(pi)+(1− 1

c
)log(1−pi)

]
+(1−li)

[
log(1−pi)

])
(7)

nnPUBCE=−
∑N

i=1

(
li

[
1
c log(pi)

]
+max

(
0,(1−li)

[
log(1−pi)

]
+li(1− 1

c )log(1−pi)
))

(8)

Unlike the binary cross-entropy, as shown in Equation 2, the ground-truth label y is
not available but the label status l∈{0,1}. Notice that a labelled instance is always
a positive example. We can, thus, use uPUBCE and nnPUBCE as the loss function
for a classification technique.

5 Experimental Setup

5.1 Setup

To address the hypotheses introduced earlier, two experimental setups were carefully
constructed. Both share a similar setup, visualised in Figure 1. An event log is taken
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and split into a training set and a test set. This is done 80−20% out-of-time, i.e. every
case with time activity timestamps before a certain moment is added to the training set
and later cases are added to the test set (in way that approximately 20% of the cases
ends up in the test set). However, since we do not want to discard too much data, it
was opted to do a split without discarding the whole cases in an overlapping period and
only remove the specific event with overlap to the test log period, in correspondence to
other works in literature [24]. Subsequently, we look at the different positively labelled
traces in the training, and flip different percentages (25, 50 and 75%) of these labels
to a negative label, hereby replicating situations where different positive cases in the
training set would not have been classified as such. The negative label should therefore
better be called unlabelled. We also keep one Original log, for which no labels have
been flipped. For each of these training sets, the prefix log is obtained, which is then
used to train different models. The models used are each time an XGBoost classifier
and an LSTM neural network, albeit with varying loss functions. In Experiment 1 we
solely want to investigate the possible negative effect of mislabelling positive examples.
For this purpose, we opt to use the standard binary cross entropy. After training, the
classifier predicts the labels of all prefixes in the prefix log of the test log, and these la-
bels are compared to the true labels. As a score, we use the area under the ROC curve
(AUC), which can be used to express the probability a classifier will give a higher predic-
tion to a positive example than to a negative example. This was chosen due to it being
threshold-independent and unbiased with imbalanced data sets. Notice that we did not
flip any labels in the test log, as we want to test the model’s actual performance. The
different models (trained on logs with different label flip percentages) are compared.

In Experiment 2 we also train classifiers with the uPU and nnPU loss functions
introduced in Section 3. These classifiers are trained on the same training logs (only
the one with label flips this time). By comparing the AUC on the test (untouched)
examples, we can investigate the possible advantages of using PU learning loss
functions over binary cross entropy. The XGBoost model is taken from [3] and the
LSTM model is implemented by using the Python library Keras 2. The uPU and nnPU
loss function implementations designed for this work are also working on top of these
libraries. The PU loss functions demand the user to give a class prior. In this work, we
have used the percentage of label flips as input, to derive an estimate for the class prior.
This is not a fully realistic setting, as in real-life you might not know how many positive
cases you will have missed. However, often an adequate guess can be made based on
expert knowledge or previous samples. The class prior derived from the flip ratio does
not lead to the exact class prior as well, as it is based on traces and not prefixes. Longer
traces create more prefixes in the training log since every activity in a trace (minus
the last) is used as the last activity in a prefix. In addition, the positive class ratio
of the training log is different from that of the test set. With this not-exact estimate
of the class prior, we, therefore, deem our setup suitable to investigate Hypothesis 2.

2 https://keras.io

https://keras.io
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Fig. 1. Overview of the setup.

5.2 Event Logs

We have selected two sets of often used and publicly available event logs recorded from
real-life processes. The outcomes are derived from a set of LTL rules similar as has been
done in [13,4,24,20]. The first set of event logs, BPIC2011 or Hospital Log, consists
of four sublogs collected from the Gynaecology department of a Dutch Academic
Hospital [6]. The different outcome LTL rules, and the accompanying trace cutting, are
taken over from [24]. After collecting the patient’s information, the patient’s procedures
and treatments are recorded. The BPIC2015 event log consists of 5 different sublogs,
each one having recorded a building permit application process in 5 different Dutch
municipalities [5]. They share one LTL rule, checking whether a certain activity send
confirmation receipt must always be followed by retrieve missing data [24]. The event
logs’ most important characteristics can be found in Table 1. Next to the number of
traces in both train and test log, the minimum, maximum and median length of the
traces can be found as well, together with the truncation length (prefixes longer than
this length are not to be used). This can be due to computational considerations (cut off
at 40 events) or earlier because the trace has reached all events determining its outcome.
Also mentioned are the positive class ratio, R(+) in both training and test set.

Dataset Min Len Med Len Max Len Trunc. Len #Train #Test R(+) Train R(+) Test
2011_1 1 25 1814 36 912 228 0.38 0.48
2011_2 1 54.5 1814 40 912 228 0.81 0.66
2011_3 1 21 1368 31 896 225 0.20 0.36
2011_4 1 44 1432 40 912 228 0.25 0.39
2015_1 2 42 101 40 555 140 0.22 0.26
2015_2 1 55 132 40 602 151 0.20 0.17
2015_3 3 42 124 40 1062 266 0.17 0.25
2015_4 1 42 82 40 460 116 0.17 0.13
2015_5 5 50 134 40 840 211 0.32 0.26

Table 1. An overview of the characteristics of the data sets used.

5.3 Encoding and Hyperparameters

The prepossessing pipeline of the XGBoost model is based on previous work discussing
different machine learning approaches [24]. The adjustments to the preprocessing
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pipeline to use the LSTM model are taken from [20]. To ensure proper training, some
hyperparameters have to be carefully selected. For this purpose, we have done a
hyperparameters search for each of the variations (different label flip ratios) of each log,
and this for each different model (using different loss functions). The hyperparameter
selection is performed with the use of hyperopt. For the LSTM models these are
the size of the LSTM hidden layers, the batch size dropout rate, learning rate and
optimizer (Adam, Nadam, SGD or RMSprop) used during training. For the XGB
models these are subsample, maximum tree depth, colsample bytree, minimum child
weight and the learning rate. The XGB models also use the aggregation encoding
setting to encode the features of a prefix, taken over from [24]. Although this sequence
encoding mechanism ignores the order of the traces, the study of k [24] shows that
it works best for our selected data sets (and similar pipeline). For the LSTM models,
the features are encoded in an embedding layer. The rest of the model consists of
two bidirectional recurrent layers, with a dense output layer.

6 Experimental Evaluation

6.1 Experiment 1

The AUC on the independent test set is assessed for each of the models trained on
the training logs with different ratios of flipping the positive examples. The results
can be found in Table 6.1 and, as expected, overall we can see a decreasing trend in
AUC when adding more and more label flips to the training set. What stands out is
the relative bad AUC of the LSTM model as compared to the XGB. The decrease in
AUC when adding positive label flips to the training set, often also seems sharper and
more volatile (not always decreasing when more label flips are added) for the LSTM
classifiers. The LSTM classifier trained on the original ‘bpic_2011_3’ training set
seems to score a particularly low score, and definitely stands out as an outlier. Another
remarkable example can be found for data set ‘bpic_2015_2’, and ‘bpic_2015_3’,
for which the relatively limited AUC decrease (for the XGB model) might be partially
explained by this data set containing a lot of longer traces. The AUC results for the
XGBoost model of [24] show that predictions for prefixes longer than length 15 are all
almost 1. Intuitively, this boils down to the fact that the model is almost certain of the
label prediction for prefixes with a minimal length of 15. In addition, the prefix log of
the test set contains 63% prefixes of size larger or equal to 15, at which point the XGB
model already has almost perfect predictions, such that the influence of the data flips
in the training set has less influence on the overall AUC score. This is however only
a partial explanation since it would not explain an actual increase of the XGB test
performance when training on the training data with 25% of the positive labels flipped
as compared to a model trained on the untouched training set. Possibly effects like
the test set having a lower positive label ratio than the training set, or other data set-
specific characteristics, might provide some extra explanation. Overall, we can confirm
Hypothesis 1, however, the extent (and volatility) of the decrease can still be process
dependent, or might even depend on which specific cases have a missing positive label.

http://proceedings.mlr.press/v28/bergstra13.html
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Flip Ratio
Dataset Method 0% 25% 50% 75%

bpic2011_1 LSTM 0.891 0.514 0.667 0.509
bpic2011_1 XGB 0.944 0.867 0.805 0.751
bpic2011_2 LSTM 0.882 0.520 0.783 0.494
bpic2011_2 XGB 0.972 0.962 0.905 0.785
bpic2011_3 LSTM 0.680 0.863 0.755 0.831
bpic2011_3 XGB 0.989 0.982 0.803 0.905
bpic2011_4 LSTM 0.873 0.680 0.680 0.736
bpic2011_4 XGB 0.865 0.855 0.813 0.720
bpic2015_1 LSTM 0.885 0.706 0.712 0.579
bpic2015_1 XGB 0.917 0.919 0.904 0.761
bpic2015_2 LSTM 0.937 0.854 0.803 0.807
bpic2015_2 XGB 0.947 0.952 0.914 0.909
bpic2015_3 LSTM 0.878 0.673 0.694 0.624
bpic2015_3 XGB 0.962 0.941 0.942 0.930
bpic2015_4 LSTM 0.858 0.784 0.715 0.465
bpic2015_4 XGB 0.917 0.898 0.837 0.847
bpic2015_5 LSTM 0.916 0.757 0.759 0.667
bpic2015_5 XGB 0.944 0.939 0.907 0.813

Table 2. AUC on an untouched test set for XGB and LSTM models, trained on training
logs with different amounts of label flips.

6.2 Experiment 2

As mentioned earlier, in a second experiment we introduce the models using the uPU
and nnPU loss functions, next to those using binary cross entropy (CE). We discard
the original logs and only look at the logs for which positive labels have been flipped.
The results of these experiments can be found in Table 6.2. Overall, an uplift can
be seen in using the nnPU loss function over the BCE, for both LSTM and XGB.
However, this is not always the case and the effectiveness of using PU learning seems
to be log-dependent. Standing out again in the event log ‘bpic_2015_2’, for which
the nnPU function seems not to be effective (even very flawed in the LSTM’s case).
This event log also showed only slight decreases in AUC when adding the label flips.
Overall, using the nnPU loss function seems to lead to better scores than the uPU.
Also in OOPPM the possibly negative risk values the uPU loss function can obtain,
seem to have a negative impact on the learning. Depending on the process in question,
using the nnPU loss function seems to be able to increase the real performance of a
classifier, so Hypothesis 2 can be (partially) confirmed. Further research will be needed
to understand when and why PU learning seems (not) to work well in OOPPM.

7 Conclusion and Future Work

In this work, we have introduced OOPPM models to a setting where our training
log consists of positive and unlabelled traces. This kind of situation might arise
when the labelling of your positive cases is uncertain, e.g. when it is hard for the
process owner to obtain all the information or be sure. A key example application is
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LSTM XGB
Dataset Flip CE nnPU uPU CE nnPU uPU

bpic2011_1 25% 0.514 0.818 0.818 0.867 0.910 0.897
bpic2011_1 50% 0.667 0.736 0.565 0.805 0.889 0.800
bpic2011_1 75% 0.509 0.505 0.727 0.751 0.801 0.684
bpic2011_2 25% 0.520 0.752 0.723 0.962 0.963 0.921
bpic2011_2 50% 0.783 0.820 0.662 0.905 0.922 0.942
bpic2011_2 75% 0.494 0.530 0.612 0.785 0.827 0.545
bpic2011_3 25% 0.863 0.838 0.750 0.982 0.975 0.987
bpic2011_3 50% 0.755 0.773 0.687 0.803 0.925 0.831
bpic2011_3 75% 0.831 0.779 0.707 0.905 0.931 0.911
bpic2011_4 25% 0.680 0.773 0.775 0.855 0.868 0.861
bpic2011_4 50% 0.680 0.784 0.734 0.813 0.812 0.718
bpic2011_4 75% 0.736 0.694 0.840 0.720 0.797 0.729
bpic2015_1 25% 0.706 0.804 0.817 0.919 0.916 0.917
bpic2015_1 50% 0.712 0.803 0.663 0.904 0.918 0.865
bpic2015_1 75% 0.579 0.609 0.638 0.761 0.631 0.774
bpic2015_2 25% 0.854 0.486 0.839 0.952 0.949 0.945
bpic2015_2 50% 0.803 0.594 0.855 0.914 0.902 0.867
bpic2015_2 75% 0.807 0.742 0.653 0.909 0.858 0.821
bpic2015_3 25% 0.673 0.777 0.592 0.941 0.955 0.947
bpic2015_3 50% 0.694 0.715 0.628 0.942 0.942 0.934
bpic2015_3 75% 0.624 0.835 0.583 0.930 0.904 0.930
bpic2015_4 25% 0.784 0.821 0.801 0.898 0.898 0.923
bpic2015_4 50% 0.715 0.615 0.678 0.837 0.886 0.844
bpic2015_4 75% 0.465 0.664 0.598 0.847 0.835 0.839
bpic2015_5 25% 0.757 0.710 0.684 0.939 0.937 0.924
bpic2015_5 50% 0.759 0.755 0.693 0.907 0.921 0.912
bpic2015_5 75% 0.667 0.680 0.576 0.813 0.837 0.777

Table 3. AUC on an untouched test set for models trained with different loss functions on
training logs with different amounts of label flips.

fraud detection, but also in other areas, obtaining accurate labels for all cases might
be costly or even impossible, such as labels based on customer feedback or labels
to be obtained from other parties collaborating in a multi-organisational business
process. By training different LSTM and XGB models on different variations of an
event log, each time with an increasing number of the positively labelled traces’ label
flipped to negative (and therefore changing the negative label to unlabelled), a drop
in the classifiers’ performance could be noticed, hereby confirming Hypothesis 1.
Furthermore, we investigated the potential use of loss functions from the field of PU
learning to mitigate this issue and found that generally, on our example event logs,
a model trained with the nnPU loss function would score higher in a situation where
the training data had traces’ positive labels flipped. This was generally true, but not
for all event logs, so further investigations and fine-tuning might be interesting when
applying this to data from other processes. This paper opens up a door for future
research on OOPPM in positive and unlabelled settings.

In future work, a more extensive experiment with more event logs could be per-
formed. Furthermore, creating multiple variations of the log for each random flip ratio,
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as well as flipping labels of examples closer or further from the decision boundary might
have an impact. A setting with 0% of the cases flipped has been excluded from experi-
ment 2 since there would be little effect in changing the loss function (as the flip ratio
was given). In future experiments on the sensitivity of having an (incorrect) class prior,
this setting could be added, however. It would also be interesting to test this setup in
data for which we know the labelling is uncertain by itself, in contrast to doing the
ratio flips ourselves. One other limitation of this work is that our loss functions rely on
knowing the class prior, and for this, we have used the flip ratio as an input. Because we
purely wanted to investigate the potential use of the PU loss function (and because the
class prior was still not the exact class prior of the training set), this was deemed accept-
able. However, in future work, it might be interesting to investigate the impact of using
different class prior values (or using class priors derived from different samples). Other
future work on dealing with unreliable negative labels could be found in investigating
options besides altering the loss function. The process behaviour itself may also reveal
valuable information concerning which negative labels can be considered more certain.
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