Genetic algorithms for AutoML in process
predictive monitoring

Nahyun Kwon! and Marco Comuzzi?
Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
{eekfskgus,mcomuzzi}@unist.ac.kr

Abstract. Inrecent years, AutoML has emerged as a promising technique
for reducing computational and time cost by automating the development
of machine learning models. Existing AutoML tools cannot be applied
directly to process predictive monitoring (PPM), because they do not
support several configuration parameters that are PPM-specific, such as
trace bucketing or encoding. In other words, they are only specialized in
finding the best configuration of machine learning model hyperparameters.
In this paper, we present a simple yet extensible framework for AutoML
in PPM. The framework uses genetic algorithms to explore a configuration
space containing both PPM-specific parameters and the traditional
machine learning model hyperparameters. We design four different types
of experiments to verify the effectiveness of the proposed approach,
comparing its performance in respect of random search of the configuration
space, using two publicly available event logs. The results demonstrate
that the proposed approach outperforms consistently the random search.

Key words: AutoML, genetic algorithm, predictive process monitoring,
hyperparameter optimization

1 Introduction

Predictive process monitoring (PPM) is concerned with creating predictive
models of aspects of interests of running process cases using the historical process
execution data logged in so-called event logs [1]. Typical aspects predicted are
the outcome of running cases or the next event to be executed in a running case.

PPM research has endured an exponential success in the last decade. However,
the same cannot be said about the uptake of PPM solutions in practice. Existing
commercial process mining tools, like Celonis or Apromore, have introduced
simple PPM solutions only very recently. We argue that the main reason for
such a limited uptake is the gap between the developer of the PPM models (a
process mining expert) and the user of these models (a process analyst). The
latter have the knowledge to interpret the insights given by PPM models, but
they often lack the technical skills of the former to develop the PPM models
effectively. This gap can be seen as an instance of a more general gap between
machine learning experts, who develop models, and business analysts, who are in
charge of using the insights returned by these models to take business decisions.

2 Kwon and Comuzzi

AutoML [2] is one prominent solution to bridge this gap. It aims at creating
automated ways to support multiple aspects of the traditional machine learning
model development pipeline, like data preparation, feature extraction, model
selection, or hyperparameter optimisation. Specifically, given a dataset and a
machine learning problem, the aim of an AutoML framework is to propose an
optimal model to the user, hiding most of the inner details regarding the model
development. AutoML solutions have proliferated in the last few years [3], even
being touted to represent the “death of the data scientists”.

In PPM, AutoML has received little attention. This is to some extent not
surprising, since AutoML solutions for traditional machine learning problems
cannot be directly instantiated into PPM problems. Besides the model hyperparameter
optimisation, in fact, PPM requires to optimise other parameters, such as the
type of trace encoding or bucketing used, which are PPM-specific and, therefore,
cannot be directly understood by existing AutoML tools.

More broadly, the benchmark experiments for different PPM use cases [4,
5, 6] published in the literature provide only generic guidelines regarding the
effectiveness of different ML techniques in specific PPM scenarios, but no
automated solution. Nirdizati [7], i.e., a tool for automated development of PPM
models, can develop different PPM models for a given PPM problem and show
the results to the user. However, it has only limited facilities to optimise the
models shown to the user. The only approach resembling AutoML is the one
proposed by Di Francescomarino et al. [8] (also implemented within Nirdizati),
in which genetic algorithms are adopted to optimise the parameters of outcome-
based PPM models.

In this paper we propose a simple yet extensible AutoML framework for
developing well-performing PPM models. The framework aims at optimising a
set of PPM model parameters that comprise: the specific model used to create
a predictive model (e.g., decision tree vs. random forest), the hyperparameters
of the model, and other parameters specific to PPM, like the technique used to
encode traces or the number of prefix buckets used to develop a model in the
case of outcome prediction.

The presentation of the framework is split into two parts: (i) the solution
space identification and (ii) a model optimisation method based on genetic
algorithms (GA). In this paper, the proposed framework is instantiated in the
case of outcome-based PPM. However, we argue that only little adaptation
would be required for its instantiation in other PPM use cases, like next-activity
prediction, that yield a machine learning classification problem. The framework
is evaluated on two publicly available real world event logs and comparing
different experiment configurations in respect of a baseline that involves random
search of the configuration parameter space.

The paper is organised as follows. Section 2 briefly discusses the related work.
Section 3 presents the parameter optimization space in the case of outcome-based
PPM, while Section 4 presents the application of GA to solve the problem of
finding a high performing model. The results of the evaluation are presented in
Section 5, while conclusions are drawn in Section 6.

Genetic algorithms for AutoML in process predictive monitoring 3

Table 1. PPM-specific model configuration space

parameter range

drop.act {2,4,6,8}

bucketing [1,2 * mean trace length]
encoding {’aggregate’, ’index’}
model {'DT’, '"RF’, ’XGB’, 'LGBM'}

2 Related work

AutoML automates the process of developing the best model, e.g., the most
accurate, to address a given machine learning challenge, speeding up the model
development phase and facilitating the application of ML techniques even by
non-experts. Different AutoML frameworks, such as Auto-sklearn, Tree-Based
Pipeline Optimization Tool (TPOT), or H20, provide different automated
solutions for each different step of the typical machine learning pipeline [2, 3],
such as data preparation or hyperparameter optimisation.

Predictive process monitoring [9, 1] concerns various prediction tasks such
as predicting the outcome of a process [4], the next event of a running case [6],
or time-related measures [5]. Approaches in the literature often define process
outcomes as the satisfaction of service level agreements or the satisfaction of
temporal constraints defined on the order and the occurrence of tasks in a
case. Extensive efforts have been devoted to enhancing the performance of
predictive monitoring models. Recently, deep learning is increasingly applied
to solve the problem of outcome prediction [10]. However, deep learning-based
approaches require extensive specialist skills by model developers to set the
model hyperparameters effectively.

As mentioned in the Introduction, AutoML has been generally neglected
by the PPM literature, with the exception of [8]. In respect of the work of
Di Francescomarino et al. [8], the framework proposed in this paper considers
different encoding and bucketing methods, additional parameters, such as the
dropping of infrequent activities, a broader set of models, including boosting
ensemble models, and different experiment configurations instead of a single one
in which all the parameters are optimised using the GA at once.

3 A configuration space for predictive monitoring

We consider the PPM use case of outcome-based predictive monitoring, where
the aim is to predict a binary categorical outcome of running cases. An analysis
of the literature prompted us to design a configuration space that includes four
PPM-specific parameters, which are shown in Tab. 1 and discussed next.
Drop_act : this parameter captures the process of removing low-frequency
activities from an event log. It can give benefits of reducing the computational
cost when creating a predictive model and it has been demonstrated to improve
the model performance in some cases [11]. We consider a discrete gap-based

4 Kwon and Comuzzi

Table 2. Configuration space of hyperparameyters of classification models

parameter range
max_depth (2,20)

DT min_samples_leaf (5,100)

criterion ['gini’, ’entropy’]
n_estimators (10,1000)
max.depth (2,20)

RF max_features Pauto’, "log2’]
bootstrap [True, False]
criterion [’gini’, "entropy’]
max_depth (2,20)

XGB n.estimators (10,1000)

learningrate | [0.01, 0.05, 0.1]
max_depth (2,20)
LGBM nun_leaves (10,500)
min_child.samples (2,10)

scale for this parameters, which includes dropping the 2, 4, 6, or 8 less frequent
activities in an event log.

Bucketing : When pre-processing an event log for outcome-based prediction,
prefixes of each trace are extracted to construct a prefix log. In this paper,
we consider prefix-length bucketing, which is concerned with grouping prefixes
of the same length. A base strategy (zero-bucketing) groups all prefixes in a
single bucket, thus training a single classifier. In prefix length bucketing, though,
each bucket contains partial traces of a specific length, and one classifier is
trained for each possible prefix length. Bucketing allows to group homogeneous
prefixes, which is supposed to improve the performance of the trained models.
For instance, if a lossless encoding that translates each event into a fixed of
number features is adopted, then bucketing avoids the need to zero-pad prefixes
of different length after encoding. Given an input event log, this parameter can
assume values comprised between 1 (corresponding to zero-padding) up to two
times the mean length of traces in an event log.

Encoding : The prefixes extracted from an event log must be numerically
encoded to be fed into the model. The problem of encoding prefixes is one of
complex symbolic sequence encoding [12] and can be approached in multiple
ways. In this paper, we consider aggregation and index-based encoding. Aggregation
is a lossy encoding, which represents entire event sequence attributes into a single
entity, for example, based on frequency. Index-based is a lossless encoding that
maintains the order of events in a prefix. In index-based encoding, each event in
a prefix is encoded into a fixed number of numerical features.

Model : This parameter concerns the choice of the classification model to use
for developing the predictive model(s). Even though any classification model
can be used, the literature highlights that tree-based classifiers show good
performance in outcome-based PPM [4]. Thus, in this work we consider four
kinds of tree-based, including both individual and ensemble classifiers: Decision
Tree (DT), Random Forest (RF), XGBoost (XGB), and LightGBM (LGBM).

Once amodel is chosen, the hyperparameters of the model must be optimised.
This is one of the typical functionalities of AutoML tools. In this work, we
combine the optimisation of the model hyperparameters with the PPM-specific
parameters mentioned above. Tab. 2 lists the domain of hyperparameters for each
classifier that we consider in this work. Although several additional hyperparameters

Genetic algorithms for AutoML in process predictive monitoring 5

PPM AutoML Framework

Traditional PPM pipeline

Encoding |C=| Bucketing
Filtered Filtered
Event Logs refix Logs p
orop Model(s) || Modells)
2 N & Training ¢ PPM model

Event = :Ttwity Prefix @ ﬁ =
Log iltering. % a Extraction % &
Drop Drop
8 9 GA controller

GA-based PPM model development

Fig. 1. GA-based framework for PPM model optimisation

can be considered for each classifier, in this work we consider a restricted set
of hyperparameters that are shown to have significant effect on the model
performance in the literature [13, 14, 15]. For the hyperparemters not mentioned
in Tab. 2, we use the default settings of the Python implementation (more details
about this in Section 5).

After having introduced the PPM model configuration space above, we can
now introduce the architecture of the proposed PPM AutoML framework, which
is depicted in Fig. 1. We assume that the PPM use case has been defined, so the
input of the framework is simply an event log. First, several pre-processed filtered
event logs in which the low-frequency activities are dropped are generated, i.e.,
one for each possible value of drop_act. Then, for each filtered event log, the
prefixes are extracted for each trace, which yields a set of filtered prefix logs.
The filtered prefix logs are the input of the GA-based PPM model development
module. This comprises the GA controller — implementing the logic of the
GA-based optimisation presented in the next section — and a traditional PPM
pipeline, which is called by the GA controller to generate new PPM models for
given values of the configuration space parameters. The output of the framework
is one PPM model, i.e., the highest-performing one identified by the GA-based
optimisation.

4 GAs for exploring the configuration space

GA was inspired from the Darwinian theory of evolution [16] according to
which fitter individuals survive and their genes are passed onto the offspring. In
a GA, every individual solution, i.e., a PPM model in our case, corresponds to
a chromosome and each parameter represents a gene of a chromosome, which
assume a certain value in the configuration space. GA evaluates the fitness of each
individual in the population using a fitness function. A selection process is used
at each iteration to select the best chromosomes. These then mate to produce
an offspring using the crossover operation. In addition, at each iteration several
chromosomes are mutated, i.e., their value is randomly changed. Ideally, as

6 Kwon and Comuzzi

generations go on, the fitness value of the offspring increases, until a sufficiently
fit individual is identified. We describe next how the typical elements of a GA
are customised in our framework.

Initial population: The GA algorithm starts with creating an initial population.
This population is generated by choosing parameter values randomly within a
domain in configuration space. In our framework, the size of the initial population
is 20 individuals.

FEvaluate fitness: In this step, the GA computes the fitness value of each
individual in the present population. Fitness is considered as an evaluation metric
as well as objective function in GA. Individuals with high fitness value are likely
to be selected, mutated and mated with another for crossover. In some simple GA
implementations, fitness is defined as a single indicator, such as model accuracy.
However, relying on only one metric can provide wrong insights. For example,
when the distribution of classes is unbalanced, like in many PPM scenarios [4, 6],
the accuracy is not sufficient to evaluate performance. In this context, it is helpful
to use multiple measures rather than only one, as they compensate each other.
Thus, we designed the fitness f(¢) of an individual 4, i.e., an outcome-based PPM
model, to combine different measures as follows:

i) = sc(i) + re(i) Itr(i) + se(7)

where: AUCH .
se(i) = (z)2+ acc() ,

re(i) =1 — failure rate(i),

te(i) = max (time) — time(i)

max(time) — min(time)

se(i) =

In the formulas above, the score sc(i) combines the average Area Under the
receiving operator Curve AUC and the average accuracy acc obtained by the
model i. AUC is a more balanced performance measure that is often considered
in PPM problems.

The reliability re(7) is a measure that computes the overall reliability of the
predictions made by an individual ¢ over the test set. A classifier assigns to each
observation in a dataset probabilities for each of the outcome labels. The label
associated with the highest probability is chosen as the predicted one. When
such a highest probability is less than a minimum threshold, we say that the
prediction has failed, i.e. it is not reliable. In the GA, we compute the failure
rate as 1 minus the fraction of observations (running cases) in a dataset for which
the prediction failed. The minimum threshold value used in the experiments is
0.7, e.g., a prefix predicted with probability of 0.65 and 0.35 of having a positive
or negative label, respectively, is considered a failed prediction.

sc(i) — min(sc)

max(sc) — min(sc)

Genetic algorithms for AutoML in process predictive monitoring 7

The time efficiency te(i) represents the relative amount of time required for a
an individual to be trained and tested (in respect of the maximum and minimum
times observed in the current population). One main purpose of AutoML is in
fact to reduce the time for identifying a machine learning model. In this direction,
the time efficiency represents how efficient the computation of a chromosome
is compared to the other chromosomes in the same population. Similarly to
the time efficiency, the score efficiency se(i) represents the relative value of the
score of the current individual ¢ in respect of all the other individuals of the
current population. This term is introduced to consider also the magnitude of
the performance improvement when evaluating the fitness of a new individual 3.

Selection: The main objective of the selection is to give a higher chance
of being a parent to the fittest individuals in order to pass on better genes
to offsprings. In other words, the higher fitness an individual has, the higher
opportunity of selection. In this context, we adopted the roulette wheel strategy
in our framework, in which the best individual has the largest chance to be
selected, while the worst individual has the lowest chance.

Crossover and Mutation: Crossover is implemented by selecting a random
point (or points) in a chromosome where the exchange of parents’ genes happens.
The crossover then brings up a new offspring based on the exchange point chosen
with particular parts of the parents. Since we consider a limiter number of
parameters defining a chromosome, we use the one-point crossover, in which
only one crossover point along the chromosome is randomly selected.

The purpose of the mutation is to encourage diversity in the population, thus
alleviating the local-optima problem in a GA implementation. When mutation is
applied, a few genes in the chromosome are randomly changed to produce a new
offspring. As a result, this creates new adaptive solutions to avoid local optima.
We decided to change one gene for each mutation step.

The GA is thus characterised by the parameter crossover rate cr and the
mutation rate mr. Both range between 0 and 1. The crossover rate indicates
the chance that two chromosomes mate and exchange their genes, so that a new
offspring is produced. If ¢r = 1 (100%), all the offspring are obtained applying
the crossover. If ¢r = 0 then no mating at all occurs, i.e., a new generation is
exactly the same as the previous one. The mutation rate determines how many
chromosomes should be mutated in a generation. Setting mr = 1 (100%) results
in mutating all the chromosomes in a population, while mutation never occurs
when mr = 0. In the experiments, the values of these two parameters have been
set experimentally through grid search (more details in the next section).

New population: A new population is generated by selection, crossover,
and mutation. If the termination test (see next) is not passed, this population
becomes the parent generation for the next population.

Termination test: A GA algorithm must stop, returning the best solution
found as a result. Therefore, a termination condition is tested for every generation.
Three conditions are tested and, if any of this is true, the algorithm stops: (i)
the maximum number of iteration is reached, (ii) the number of times in which
the average fitness of the new population is lower than the one of the previous

8 Kwon and Comuzzi

Experiment 1 Experiment 2
- All parameters are optimized through Genetic Algorithm(GA) - All parameters are optimized through GA, except ‘params’
GA GA RS
L
r = \ r \ T
['bucketing’, ‘encoding’, ‘drop_act’, ‘models’, ‘params’] ['bucketing’, ‘encoding’, ‘drop_act’, ‘models’, ‘params’]
Ikr—f Base model with default
<chromosome> params P— values of parameters
o1 S— < >
drop_act bucketing encoding models n_estimator max.depth learing_rate drop_act bucketing encoding models
[« [» [[pom] » [= [ow] « [[e [e |
20 populations x 20 generations = 400 trials 20 populations x 20 generations + 20 times random searching = 420 trials
Experiment 3 Experiment 4
- All parameters are optimized through GA, except ‘models’ and ‘params’ - All parameters are optimized through Random Search(RS)
GA RS RS
L | 1
[L 1 r 1
['bucketing’, ‘encoding’, 'drop_act’, ‘models’, ‘params’] ['bucketing’, ‘encoding’, ‘drop_act’, ‘models’, ‘params’]
L+ Evaluate using base model of XGboost
i drop_act bucketing encoding

20 populations x 20 generations + 80 times random searching = 480 trials 400 times random searching = 400 trials

Fig. 2. Experiment configurations: illustration

population exceeds a certain limit (5 in the experiments), and (iii) the difference
between the average fitness of the new population and the last one is less than
0.001. Note that (i) guarantees that the GA algorithms eventually stops.

4.1 Experiment configurations

We designed four experiment configurations based on different ways of exploring
the configuration space using GAs (see Fig. 2). In experiment 1, all the parameters
in the configuration space are expressed by genes of the chromosomes and
optimized using GA. In experiment 2, the hyperparameter values of the model
are not part of the GA-based optimisation. First, the GA is run considering
default parameter values for each model. Then, the hyperparameters of the model
selected by the best individual using GA are optmised using random search.
In experiment 3, only the PPM-specific parameters bucketing, encoding and
drop_act are optimised using GA, considering XGB as the model with default
hyperparmeter values. Then the model to be used and its hyperparameters are
selected using random search. The fourth experiment is a totally random search
(RS) baseline, in which all the values of all the parameters are optimised using
random search. As can be seen in Fig. 2, all the experiments are configured to
generate between 400 and 500 trials, i.e., models to train and test.

5 Experimental evaluation

First, we discuss the experimental settings (datasets, GA parameter settings,
implementation details) and then we present the experimental results. The
framework is implemented in Python and the code to reproduce the experiments
is publicly available at https://github.com/eekfskgus/GA_based_AutoML/.

Genetic algorithms for AutoML in process predictive monitoring 9

‘We consider 2 event logs publicly available at https://data.4tu.nl/ published

by the Business Process Intelligence Challenge in 2012 and 2017. The BPIC 2012
and BPIC 2017 event logs are from a process of managing loan requests at a
Dutch financial institution. These logs have been chosen because they contain
an outcome label and have been used by previous research on outcome-based
process predictive monitoring. In the BPIC 2012 and BPIC 2017 event logs the
outcome label captures whether a loan request is eventually accepted or not.

The design of GAs requires to set the values of several parameters. The value
of the GA parameters can impact greatly on the solution found, even determining
whether a solution is found at all by the algorithm [17].

Table 3. Grid search test for GA parameter setting

parameter best score clapsed time(s)
cr = 0.9, mr = 0.1 0.76 4611
cr = 0.9, mr = 0.05| 0.75 4538
cr = 0.9, mr = 0.01| 0.82 3848
cr = 0.8, mr = 0.1 0.75 3947
cr = 0.8, mr = 0.05| 0.71 4486
cr = 0.8, mr = 0.01| 0.76 4233
cr = 0.7, mr = 0.1 0.77 4468
cr = 0.7, mr = 0.05| 0.73 5424
cr = 0.7, mr = 0.01 0.7 4554

To find the best value of ¢r and mr, we conducted a grid search experiment
using the BPIC 2012 dataset, in which ¢r € [0.9,0.8,0.7] and mr € [0.1,0.05, 0.01].
It is known that high crossover rate and low mutation rate effectively works
in GA, since the low crossover rates lead to low rates of exploration, whereas
high mutation rates increase the randomness of the search [18, 19]. For every
combination, we evaluated the best individual found and the elapsed time using
the experiment 1 configuration. The results of this test are shown in Tab. 3 (the
selected parameter values are in bold). For the other GA parameters, the initial
population size is 20, with 5 individuals randomly generated for each of the 4
classification models considered. For the termination condition, the maximum
number of iteration is 20.

For the training and testing of new individuals in a generation, the (training:test)

ratio is set to (4:1). In addition, if the imbalance ratio of the minority class
over the majority class is less than 0.33, then the dataset is automatically
re-sampled using synthetic minority over-sampling, widely known as SMOTE.
SMOTE sampling could lead to benefit the performance of classification in
class imbalance problem, by improving class boundary region especially with
extremely imbalanced datasets.

Tab. 4 compares the best solution obtained by the four types of experiments.
Given the randomness intrinsic to the experiments, for each type of experiment
we show the results of three different runs. We compare the execution time,
the accuracy-AUC-based score (sc), and the values of the parameters of the
configuration space. The proposed GA-based framework (adopted in experiments
1, 2, and 3) generally outscore the RS (experiment 4), on both execution time
and quality of the solution (score). Interestingly, the classifiers XGB and LGBM

10 Kwon and Comuzzi

Table 4. Best solutions and corresponding parameter values

experiment 1 experiment 2 experiment 3 experiment 4
run 1 run 2 run 3 run 1 run 2 run 3 | run 1 run 2 run 3 run 1 run 2 run 3
time(s) [93532 95454 83139 84823 113432 51252 |157937 123628 82579 113952 119033 117269
sc 0.83 0.74 0.96 0.94 0.78 0.89 0.78 0.92 0.99 0.84 0.82 0.84
BPIC2012 model XGB DT RF LGBM RF LGBM|LGBM LGBM XGB RF RF RF
drop-act 8 8 4 4 6 2 8 4 8 6 8 6
bucketing| 30 29 13 22 34 26 39 23 6 2 2 1
encoding |index index index index index index | index index aggregate|aggregate index index
time(s) [77644 83140 101942 | 80839 54720 76564 (102004 96954 109210 119351 93833 165861
sc 0.83 0.96 0.96 0.94 0.84 0.73 0.76 0.99 0.96 0.75 0.74 0.78
BPIC2017 model RF RF XGB LGBM XGB RF LGBM XGB LGBM DT RF DT
drop-act 6 4 6 8 8 8 4 4 4 6 8 8
bucketing| 25 13 6 7 28 34 37 18 9 1 1 3
encoding |index index aggregate| index index index | index index index index index index
Experiment 1 Experiment 2 Experiment 3
10 10 10
08 08 08
w w w
@ a A
@ 06 @06 @ 06
@ @ i
£ £ £
0z 02 02
00 00 00
24 65 8B D1 Mk B2 24 6 B 10121 1% 1B D 24 6 B 1R W\ B D
Generation Generation Generation

Mﬂm
08 “‘/'/('N” 08 N e WP vs

g 2 [
5 06 506 5os
S S 3
3 3 a
& os 5 os o
o b o
£ £ £
02 02 02
00 00 00
2 4 6 8 1012 141 18 20 2 4 6 8 101214 1 18 20 2 4 6 8B 10 2 1416 18 N
Generation Generation Generation
vt ¥ M’W 10 o v
o8 08 08
z z z
F os Fos B o6
s 8 =
E e e
= =04 =04
@ @ &
@ @ il
£ £ E
02 02 02
00 00 00
IR EEEEEEEE] HREEREEEEEE] IREEEEEEEE]
Generation Generation Generation

Fig. 3. Mean parameters values over generations in the GA-based experiments (BPIC
2017 event log)

(especially the latter) are frequently selected in the experiments that use the
proposed framework, whereas RF or DT are often selected by the RS experiment.

The RS baseline in experiment 4 selects the best individual from 400 samples
obtained using parameter values randomly selected. These 400 individuals are
independent of each other, i.e., their selection is not affected by the constraints
on fitness, execution time and failure rate of the proposed GA-based framework.

Genetic algorithms for AutoML in process predictive monitoring 11

Therefore, a random search of the configuration space could work better for
individual classifiers (like DT) or bagging-based classifiers (like RF), which do
not try to improve iteratively the performance of the model. Another difference
between XGB and LGBM when compared with DT and RF is that they
use boosting. Boosting involves iterations, whereby the prediction results of a
previous model affects the results of the next one. Based on the results shown
in Tab. 4, the overlapping effect of boosting over generations improves the GA
performance. In addition, LGBM is selected more frequently than XGB because
of its superiority in terms of execution time. Being lightweight on execution time,
LGBM is likely to lead to higher fitness of the solution found in a shorter time.

Regarding the other parameters, index encoding is more dominant in the
solutions found than aggregation encoding. It appears also that dropping a higher
number of infrequent activities leads to better results. Finally, Tab. 4 shows
that the bucket size of the best chromosome tends to be higher when using the
proposed framework when compared to the RS baseline.

To show the inner dynamic of the GA-based experiments, Fig. 3 shows the
mean values across experiments 1, 2, and 3 of the three parameters fitness,
score, and reliability over generations for the BPIC 2017 dataset. We can see
that the value of each parameter tend to converge to 1 as the number of
generation increases, which shows the suitability of the GA-based approach as
an optimisation strategy for identifying a PPM model.

6 Conclusions

This paper has presented an AutoML framework for identifying a high-performing
PPM model. The framework relies on genetic algorithms for exploring a solution
space that includes both traditional and PPM-specific model hyperparameters.
In the future we plan to extend the configuration space to more dimensions and
use cases, e.g., next event prediction, and to compare the proposed GA-based
approach with other bio-inspired heuristics, e.g. swarm or particle intelligence.

References

1. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. Process
Mining Handbook. LNBIP 448 (2022) 320-346

2. Yao, Q., Wang, M., Chen, Y., Dai, W., Li, Y.F., Tu, W.W., Yang, Q., Yu, Y.:
Taking human out of learning applications: A survey on automated machine
learning. arXiv preprint arXiv:1810.13306 (2018)

3. Karmaker, S.K., Hassan, M.M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni,
K.: Automl to date and beyond: Challenges and opportunities. ACM Computing
Surveys (CSUR) 54(8) (2021) 1-36

4. Teinemaa, 1., Dumas, M., Rosa, M.L., Maggi, F.M.: Outcome-oriented predictive
process monitoring: review and benchmark. ACM Transactions on Knowledge
Discovery from Data (TKDD) 13(2) (2019) 1-57

12

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

Kwon and Comuzzi

Verenich, 1., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-
benchmark comparison of remaining time prediction methods in business process
monitoring. ACM Transactions on Intelligent Systems and Technology (TIST)
10(4) (2019) 1-34

Tama, B.A., Comuzzi, M.: An empirical comparison of classification techniques
for next event prediction using business process event logs. Expert Systems with
Applications 129 (2019) 233-245

Rizzi, W., Simonetto, L., Di Francescomarino, C., Ghidini, C., Kasekamp, T.,
Maggi, F.M.: Nirdizati 2.0: New features and redesigned backend. Proceedings of
the Dissertation Award, Doctoral Consortium, and Demonstration Track at BPM
2019 2420 (2019) 154-158

Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M.,
Rizzi, W., Simonetto, L.: Genetic algorithms for hyperparameter optimization
in predictive business process monitoring. Information Systems 74 (2018) 67-83
Marquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of
business processes: a survey. IEEE Transactions on Services Computing 11(6)
(2017) 962-977

Rama-Maneiro, E., Vidal, J., Lama, M.: Deep learning for predictive business
process monitoring: Review and benchmark. IEEE Transactions on Services
Computing (2021)

Tax, N., Sidorova, N., van der Aalst, W.M.: Discovering more precise process
models from event logs by filtering out chaotic activities. Journal of Intelligent
Information Systems 52(1) (2019) 107-139

Leontjeva, A., Conforti, R., Francescomarino, C.D., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business
processes. In: International Conference on Business Process Management, Springer
(2016) 297-313

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a python
library for model selection and hyperparameter optimization. Computational
Science & Discovery 8(1) (2015) 014008

Liang, W., Luo, S., Zhao, G., Wu, H.: Predicting hard rock pillar stability using
gbdt, xgboost, and lightgbm algorithms. Mathematics 8(5) (2020) 765

Kelkar, K.M., Bakal, J.: Hyper parameter tuning of random forest algorithm
for affective learning system. In: 2020 Third International Conference on Smart
Systems and Inventive Technology (ICSSIT), IEEE (2020) 1192-1195

Holland, J.H.: Genetic algorithms. Scientific american 267(1) (1992) 66-73
Mills, K.L., Filliben, J.J., Haines, A.: Determining relative importance and effective
settings for genetic algorithm control parameters. Evolutionary computation 23(2)
(2015) 309-342

Chiroma, H., Abdulkareem, S., Abubakar, A., Zeki, A., Gital, A.Y., Usman,
M.J.: Correlation study of genetic algorithm operators: crossover and mutation
probabilities. In: Proceedings of the International Symposium on Mathematical
Sciences and Computing Research. (2013) 6-7

Hassanat, A., Almohammadi, K., Alkafaween, E., Abunawas, E., Hammouri, A.,
Prasath, V.S.: Choosing mutation and crossover ratios for genetic algorithms—a
review with a new dynamic approach. Information 10(12) (2019) 390

