
LSTM-based Anomaly Detection of Process
Instances: Benchmark and Tweaks

Johannes Lahann, Peter Pfeiffer, and Peter Fettke

German Research Center for Artificial Intelligence (DFKI) and Saarland University,
Saarbrücken, Germany

{johannes.lahann, peter.pfeiffer, peter.fettke}@dfki.de

Abstract. Anomaly detection can identify deviations in event logs and
allows businesses to infer inconsistencies, bottlenecks, and optimization
opportunities in their business processes. In recent years, various anomaly
detection algorithms for business processes have been proposed based on
either process discovery or machine learning algorithms. While there are
apparent differences between the existing approaches, it is often unclear
how they perform in comparison. Furthermore, deep learning research in
other domains has shown that advancements did not solely come from im-
proved model architecture but are often due to minor training procedure
refinements. For this reason, this paper aims to set up a broad bench-
mark and establish a baseline for deep learning-based anomaly detection
of process instances. To this end, we introduce a simple LSTM-based
anomaly detector utilizing a collection of minor refinements and com-
pare it with existing approaches. The results suggest that the proposed
method can significantly outperform the existing approaches on a large
number of event logs consistently.

Keywords: Business Process Management · Anomaly Detection · Deep
Learning · LSTM

1 Introduction

Anomaly detection deals with the identification of rare articles, objects, or ob-
servations that differ significantly from the majority of the data and therefore
raise suspicions [16]. In the context of business process analysis, businesses ap-
ply anomaly detection to automatically detect deviations in event logs which
can be a sign of inconsistencies, bottlenecks, and optimization opportunities
in their business processes [7]. A typical approach to detect anomalous behav-
ior in business processes is to apply conformance checking [12], i.e., evaluating
the real occurred behavior that is recorded in event logs against the business
process model that business experts previously designed. However, to do this,
such a process model is required beforehand. More recently, a variety of deep
learning-based anomaly detection algorithms with different architectures have
been developed that are able to identify anomalous process behavior without re-
quiring a process model or other prior knowledge about the underlying process.

2 Lahann et al.

While there are apparent differences between the existing approaches, it is not
clear how they perform in comparison. Furthermore, deep learning research in
other domains has shown that advancements did not solely come from improved
model architecture but are often due to minor training procedure refinements
[6]. Thus, this paper aims to set up a broad benchmark between anomaly de-
tection algorithms where we compare the performance of existing approaches
with a simple LSTM-based anomaly detector that utilizes a number of minor
refinements. The contribution of this paper is threefold:

– We examine a collection of different processing, model architecture, and
anomaly score computation refinements that lead to significant model ac-
curacy or run-time improvements.

– We show that the proposed method outperforms state-of-the-art process
mining-based and deep learning-based anomaly detection methods. To this
end, we conduct experiments on the data sets from the Process Discovery
Contests, the Business Process Intelligence Challenges, and additional syn-
thetic event logs [7].

– We set up a comprehensive evaluation over a total of 328 different event logs,
which can be utilized as a benchmark for further research.

The remaining sections of the paper unfold as follows: Section 2 introduces the
reader to preliminary ideas of process mining and predictive process monitoring.
Section 3 gives a brief overview of the approach before it discusses the applied
refinements. Section 4 describes two experiments to evaluate the performance
of the proposed approach. Section 5 shows the evaluation results covering an
overall performance comparison with existing methods and a detailed analysis
of the impact of different design decisions and refinements. Section 6 relates
the developed approach to existing literature. Section 7 closes the paper with a
summary of the main contributions and an outline of future work.

2 Preliminaries

This section introduces some preliminary concepts. In particular, we introduce
the concepts of events, cases, and event logs and define next step prediction
and (case-level) anomaly detection as we understand it during the scope of this
paper.

Definition 1 Event, Case, Event Log
Let E be the universe of events. A case σ is a finite-length word of events, i.e.
σ ∈ E∗ ∧ |σ| = n, n ∈ N. An event log is a multi-set of cases, i.e. L ∈ B(E∗).

To describe a case σ, we also use the notation σ := ⟨e1, . . . , en⟩. There are
further attributes next to the activity associated with events such as resource,
timestamp, and others. These attributes can add additional information that
can also be utilized for analysis and predictive tasks.

One process prediction task that has been researched intensively in recent
years and also plays a major role in the proposed anomaly detection approach in

LSTM-based Detection of Anomalous Process Instances 3

this paper is next step prediction. Next step prediction aims to forecast the direct
continuation of an ongoing process instance based on all available information
regarding the process instance. We define next step prediction as follows:

Definition 2 Next Step Prediction
Given a prefix pt = ⟨e1, ..., et⟩ of a case σ = ⟨e1, ..., en⟩ with 0 <= t < n, t, n ∈
N, we define Next Step Prediction as a relation NSP ⊆ E∗×E that predicts the
next occurring event et+1 based of the prefix pt.

Next, we can define anomaly detection of process instances. There is a distinction
between attribute and case-level anomaly detection in the literature. While the
former detects irregular attribute values on event-level, such as false activities,
resources, or timestamps, the latter aims to classify anomalous cases. For the
scope of this paper, we are only concerned with case-level anomaly detection,
which we conceptualize as follows:

Definition 3 Case-level Anomaly Detection
We define a case-level anomaly detector as a function f that receives a case σ
and returns a label ℓ ∈ {0, 1}, where 0 indicates a normal case and 1 indicates
an anomalous case.

One may notice that we do not specify what makes a case normal or anomalous.
We argue that depending on the context, the criteria for an anomaly may differ.
Hence, a more vague definition is beneficial. In the first conducted experiment,
we understand anomaly detection similarly to conformance checking, i.e., a case
is normal if it fits a hidden process model; else, it is anomalous. In the second
experiment, synthetic events and attributes are injected into the data sets based
on a predefined rule-set. A case is considered anomalous if it contains at least
one of the injected values.

3 Proposed Approach

3.1 Overview

The proposed method investigates prediction-based anomaly detection with a
deep neural network as the predictive model. The approach can be divided into
two stages - first, we train an LSTM-based model to learn the behavior of the
process, while in the second stage, the trained model is used to assess whether
a given trace is anomalous or not. In the first stage, we train the prediction
model to solve the next step prediction task. The idea is to teach the model a
hidden representation that contains the most relevant information to predict the
possible next events. To assess whether a trace σ is anomalous or not, we use the
trained model to predict all the steps of a given case. If the predicted behavior
of the neural network and the real behavior differ significantly in at least one
of the events, we consider this observation a strong indicator that the case is
suspicious. Therefore, we mark the case as anomalous. We introduce DAPNN
(Detection of Anomalous Processes through Neural Networks), which utilizes a

4 Lahann et al.

collection of changes and refinements to previous work [9, 8] that together led to
significant performance improvements in the conducted experiments. First, we
generated fixed sliding windows, switched to LSTM-based network architecture.
Furthermore, we used multiple training methods to improve the convergence of
the neural networks. Last, we added normalization to the anomaly score com-
putation, which creates a comparable anomaly score throughout different event
logs.

3.2 Approach Characteristics and Refinements

Data Processing DAPNN is trained on windows extracted from the cases σ
of size w. Given a window of the w − 1 previous events, DAPNN’s task is to
predict the last event in the window. Thereby, we do not have to insert padding
elements to counteract the different lengths of the prefixes. Furthermore, since
the window size is usually much smaller than the maximum length of the prefixes,
this results in a much faster training time. For a case σ := ⟨e1, . . . , en⟩ and a
fixed window size w, we generate n-w windows ⟨et − w, et⟩, where w < t ≤ n.
In the conducted experiments, we used a fixed window size of 5. Next, we add
special Start and End events to each case in the event log. Thereby, the next
step prediction model can also learn to predict the beginning and the end of a
case. This is especially effective since there are anomalous cases that only behave
wrongly at the beginning or at the end.

Model Architecture and Training We decided to use a simple LSTM-based
architecture. Each case σ is split into separate sequences along the attributes,
which are processed by individual LSTM blocks. Each block consists of an em-
bedding layer, two LSTM-layer with hidden layer size 25, followed by a softmax
layer. This allows obtaining a probability distribution p⃗ per attribute found in
the event log, which serves as the basis to assess whether σ is anomalous or not.

We train each neural network for up to 25 epochs utilizing early stopping, the
learning rate finder, and cyclic learning rates [13]. While early stopping primarily
reduces training time, we see a significant improvement in the robustness of the
results through the latter two methods throughout the conducted experiments.

Anomaly Score Computation After training the prediction model, we can
utilize it to detect anomalies. To do this, we compute all windows for a given
case σ and feed them through the prediction model. For a case with n events and
m attributes, we compute m× n probability distributions p⃗. In order to obtain
the anomaly scores, we apply a scoring function Θ and store the anomaly scores
per case in a matrix Manomaly. We define Θ as follows:

Θ(p⃗, y) =
max(p⃗)− py

max(p⃗)

y depicts the actual next occurred attribute in σ, and py represents the prob-
ability that the prediction model is assigned to the attribute y. The margin of

LSTM-based Detection of Anomalous Process Instances 5

Fig. 1: Illustration of the anomaly scores of a case that resembles a skip sequence
anomaly. For the 3rd predicted event, the threshold is exceeded for 4 out of 5
attributes.

max(p⃗) and py can be interpreted as a measure of certainty for an anomaly. If
the margin is high, the prediction model is certain that another attribute should
occur instead. Hence, this is a sign of an anomaly. By normalizing with max(p⃗),
we make the anomaly score more robust so that it behaves similarly throughout
all predictions. Additionally, it penalizes deviations stronger if it has low con-
fidence regarding the occurred value. For example, if the predicted event has a
probability of 0.75 and the occurred event has a probability of 0.25, the obtained
anomaly score is (0.75−0.25)/0.75 = 0.66. However, if the predicted event has a
probability of 0.5 and the occurred event has a probability of 0.0, the obtained
anomaly score is (0.5− 0.0)/0.5 = 1.0 The normalization pushes anomalies near
1.0 and enables easier differentiation between anomalies and normal events. Fur-
thermore, it allows us to introduce a threshold that functions similarly to a
significance measure, as the threshold is relatively stable over different event
logs. Figure 1 shows the resulting anomaly scores for one particular case.

Anomaly Classification Based on the anomaly scores, we can then determine
if a case is anomalous, i.e., we define a function f that takes all anomaly scores
M of a case and a threshold τ as input and outputs a label l ∈ 0, 1.

f(Manomaly, τ) =

{
1, if max(Manomaly) > τ

0, otherwise

The intuition behind the formula is that if a case contains at least one anomaly
score greater or equal to the given threshold, it is flagged as an anomaly. In order
to choose a suitable threshold, we compare different options:

– Best Threshold : we select the optimal threshold based on the achieved F1-
score on the test set. I.e., we compute the F1-Score for all possible thresholds
and choose the threshold with the highest F1-Score. Note that this heuristic
requires labels and thus is not applicable in practice in an unsupervised

6 Lahann et al.

Table 1: Data sets of experiment 1.

Logs # Cases # Activities # Events # Anomalies

PDC 2020 Train 192 1000 16-38 8867-70106 0 / ∼ 200
PDC 2020 Test 192 1000 16-38 8764-68706 412-515
PDC 2021 Train 480 1000 37-65 9867-32009 0 / ∼ 200
PDC 2021 Test 96 250 35-64 6612-11860 125

scenario. However, it is still relevant as it allows us to measure the maximal
achievable performance with the underlying prediction model.

– Fixed Threshold: we set a fixed threshold that we use throughout all exper-
iments. We achieved reasonable results with a threshold of 0.98.

– Anomaly Ratio: we pick a threshold based on the total number or the ratio
of predicted anomalies.

– Elbow and Lowest Plateau Heuristic: we utilize heuristics based on the anomaly
ratio per potential threshold as introduced in [8].

4 Experimental Setup

4.1 Experiment 1

The first experiment compares the performance of the proposed anomaly de-
tection approach with process discovery algorithms on the Process Discovery
Contests 2020 and 2021 [14, 15]. The process discovery contest (PDC) aims to
assess tools and techniques that discover business process models from event
logs. To this end, synthetic data sets are generated that comply with general
concepts that influence process mining algorithms.

While the process discovery is designed to evaluate process discovery algo-
rithms, it measures their performance indirectly through a classification task,
identifying process cases that fit a hidden process model. Hence this task can
also be accomplished through anomaly detection. Regarding the experimental
setup, we follow the instructions from the process discovery contest. In particu-
lar, we consider the data sets from PDC 2020 and PDC 2021. Table 1 highlights
the most important characteristics and statistics about the data sets. To achieve
maximal comparability with the other algorithms that took part in the chal-
lenges, we also trained the next step prediction model on the training logs and
measured the performance on the test sets.

4.2 Experiment 2

The second experiment provides a comparison with other machine learning-based
anomaly detection approaches on the data sets generated by Nolle et al. [8].The
synthetic event logs are based on six process models with a different number of
activities, model depths, and model widths, which are created randomly with the

LSTM-based Detection of Anomalous Process Instances 7

PLG2 framework [5]. Additionally, the authors utilized the event logs from the
BPI Challenges 12, 13, 15, and 17. Subsequently, a variety of artificial anomalies
was added to some of the cases of all event logs (Table 2):

– Skip: One or multiple events are skipped.
– Insert: Random events are inserted.
– Rework: Events are executed multiple times.
– Late: Events are shifted forward.
– Early: Events are shifted backward.
– Attribute: Other attribute values of some events are altered.

Table 2: Data sets of experiment 2.

Logs # Cases # Activities # Events # Attributes # Anomalies

BPIC12 1 13087 73 289892 0 3927
BPIC13 3 819-7554 11-27 4068-81524 7 162-2257
BPIC15 5 832-1409 417-491 46110-62667 6 232-438
BPIC17 2 31509-42995 17-53 285211-1269176 2 9398-13193
Gigantic 4 5000 152-157 38774-42711 1-4 1499-1553
Huge 4 5000 109 46919-53627 1-4 1416-1479
Large 4 5000 85 61789-67524 1-4 1482-1529
Medium 4 5000 65 38990-41991 1-4 1459-1550
P2p 4 5000 27 48477-53193 1-4 1430-1563
Paper 1 5000 27 66814 1 1466
Small 4 5000 41 53437-56695 1-4 1481-1529
Wide 4 5000 58-69 39678-41910 1-4 1436-1513

4.3 Evaluation Metrics

In order to evaluate the performance of the approach, we use the F1 score, which
is a common choice for evaluating anomaly detection. The F1 score is computed
by the harmonic mean of precision and recall. The precision measures how pre-
cisely anomalies can be identified, i.e., how many of the predicted anomalies are
actual anomalies. The recall measures how many anomalies are identified and
how many anomalies are not recognized by the model:

F1-Score =
2 ∗ (precision ∗ recall)
(precision+ recall)

To comply with the specifications of the Process Discovery Contest and achieve
comparability with the existing methods, we use an adapted version of the F1-
Score in experiment 1, which is calculated by the balanced mean of the true
positive rate tpr and the true negative rate tnr:

F -Score =
2 ∗ (tpr ∗ tnr)
(tpr + tnr)

8 Lahann et al.

(a) PDC 2020 (b) PDC 2021

Fig. 2: Comparison by F-Score of the DAPNN approach with existing approaches
extracted from the PDC website.

4.4 Reproducibility

All code used for this paper, including the implementation of DAPNN as well
as the quantitative comparison with traditional and machine learning-based
anomaly detection approaches, is available in our git repository1.

5 Results

5.1 Overall Performance on the Process Discovery Contest

Figure 2 shows the performance of the DAPNN approach in comparison with
existing process discovery algorithms as described in experiment 1. In PDC 2020,
the DAPNN approach reaches an F-Score of 89% with the optimal heuristic, out-
performing all other existing methods. Moreover, the DAPNN models with the
other heuristics do not perform significantly worse. In PDC 2021, DAPNN Best
and the DAPNN LP reach the highest F-Score with 98% and 97% respectively.
The DAPNN Fix-98 performs similarly to the DisCoverR CW, the DisCoveR
Light CW, and the Log Skeleton N3 model. Since the latter models have not
been applied to the PDC 2020, it would be interesting to see how they compare
with the DAPNN approach. The results suggest that the DAPNN approach can
effectively identify the non-fitting cases in the PDC contests and is able to reach
state-of-the-art performances. The DAPNN approach can not be used straight-
forwardly for process discovery as it does not directly output a process model.
However, as they seem to be superior in the detection of cases that do not fit the
underlying process, they can be effectively combined with a process discovery
algorithm. For example, one can use a neural network to remove the noise of an
event log before applying the process discovery algorithm.

1 https://github.com/jolahann/dapnn

LSTM-based Detection of Anomalous Process Instances 9

Table 3: Comparison by F1-Score of the DAPNN approach with existing unsu-
pervised anomaly detection approaches extracted from [8].

BPIC12 BPIC13 BPIC15 BPIC17 Gigantic Huge Large Medium P2P Paper Small Wide Mean

Likelihood 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OC-SVM 0.545 0.243 0.255 0.351 0.291 0.228 0.237 0.289 0.271 0.486 0.248 0.306 0.312
Naive 0.551 0.209 0.172 0.313 0.34 0.404 0.41 0.387 0.479 0.5 0.49 0.438 0.391
Naive+ 0.551 0.209 0.173 0.276 0.383 0.454 0.49 0.439 0.48 0.5 0.488 0.469 0.409
Sampling 0.546 0.207 0.172 0.323 0.446 0.491 0.494 0.465 0.49 0.495 0.492 0.486 0.426
t-STIDE+ 0.678 0.319 0.287 0.324 0.406 0.446 0.453 0.429 0.509 0.404 0.531 0.471 0.438
DAE 0.595 0.207 0.0 0.295 0.627 0.703 0.713 0.708 0.708 0.463 0.716 0.697 0.536
Likelihood+ 0.625 0.445 0.329 0.399 0.665 0.676 0.622 0.654 0.611 0.656 0.688 0.637 0.584
BINetv2 0.607 0.397 0.375 0.43 0.68 0.704 0.71 0.719 0.768 0.757 0.775 0.733 0.638
BINetv1 0.621 0.398 0.346 0.469 0.711 0.713 0.713 0.734 0.768 0.739 0.772 0.761 0.645
BINetv3 0.664 0.446 0.362 0.489 0.662 0.693 0.692 0.709 0.769 0.791 0.762 0.738 0.648
DAPNNFIX−98 0.636 0.425 0.459 0.565 0.735 0.776 0.744 0.789 0.842 0.898 0.847 0.805 0.71
DAPNNAR−0.5 0.658 0.443 0.484 0.621 0.74 0.776 0.744 0.789 0.842 0.898 0.847 0.805 0.721
DAPNNElbow↓ 0.656 0.448 0.465 0.564 0.766 0.84 0.817 0.824 0.932 0.965 0.945 0.887 0.759
DAPNNElbow↑ 0.688 0.446 0.461 0.689 0.829 0.88 0.78 0.859 0.852 0.893 0.931 0.903 0.768
DAPNNLP−Min 0.72 0.473 0.475 0.569 0.813 0.939 0.927 0.899 0.973 0.996 0.973 0.955 0.809
DAPNNLP−Mean 0.72 0.473 0.475 0.569 0.813 0.939 0.927 0.899 0.973 0.996 0.973 0.955 0.809
DAPNNLP−Max 0.72 0.473 0.475 0.57 0.813 0.94 0.928 0.899 0.973 0.996 0.973 0.955 0.809
DAPNNBest 0.726 0.618 0.501 0.803 0.964 0.969 0.982 0.98 0.993 1.0 0.995 0.987 0.876

5.2 Overall Performance in Comparison with other Anomaly
Detection Approaches

Table 3 presents the results of experiment 2. It compares the F1-Score of 19 ap-
proaches on 40 event logs. Note that the event logs are grouped together as shown
in Table 2 highlighting the mean F1-Score over the event logs of one data group.
For example, the column BPIC13 reports the mean F1-Score over all three event
logs of the BPIC 2013. We reported the performance of the DAPNN approach
with all heuristics. However, for the other approaches, only the performance with
the LP-Mean heuristic is reported. The DAPNN approach reached top results
on all examined event logs. In terms of the heuristics, the LP heuristics achieved
better results than the elbow heuristics, followed by the anomaly ratio and the
fixed threshold. Additionally, DAPNNBest reached a very high F1-Score for all
synthetic event logs. This suggests that the prediction model is able to correctly
separate anomalous and normal cases by assigning a higher anomaly score to
anomalous events for most of the cases. However, the determination of the cor-
rect threshold is still a major challenge, as the DAPNNLP−Max with the second
highest mean F1-Score performs significantly worse than the DAPNNBest.

The results also show a clear performance gap between the synthetic event
logs and the event logs of the BPI challenges. This can be explained by two
reasons: On the one hand, the algorithms are only asked to find the artificial
anomalies. However, it is unclear whether and how many unknown anomalies
were already included in the original event logs that are not labeled as such. On
the other hand, it might be the case that the synthetic event logs cover processes
with simpler characteristics. In contrast, the processes of the BPI challenges are
more difficult to comprehend for the approaches.

10 Lahann et al.

5.3 Detection of Anomaly Types

Figure 3 compares the precision of the DAPNN with each heuristic for each
anomaly type for the datasets from the second experiment. Aside from the best
heuristic, there is no clear winner recognizable (Note that for multi-attribute
event logs, we approximated the best heuristic with Naive Bayes optimization.
Hence it is only a lower bound for the actual best score and can, in some cases,
be lower than the scores of the other heuristics). The Elbow, Fix-98, and AR-0.5
heuristics tend to produce more false positives but have a slightly higher precision
while detecting the anomalies. In contrast, the LP heuristics produce fewer false
positives. Thus, the heuristics should be chosen based on the requirements of
the business scenario.

(a) Synthetic Event Logs

(b) BPI Challenge Logs

Fig. 3: Detection Precision of the DAPNN Approach for each Anomaly Type
and Heuristic

6 Related Work

Originally, anomaly detection on business process data was performed by eval-
uating process cases captured in an event log against a reference process model
[12]. However, this requires a reference model of the underlying process, which is
not always available. To overcome this problem, Bezerra et al. define an anoma-
lous case as an irregular execution that differs from a process model that was
dynamically discovered by a process discovery algorithm [1]. The approach fol-
lows the hypothesis that anomalous cases are rare and differ significantly from

LSTM-based Detection of Anomalous Process Instances 11

normal cases. Therefore, the process discovery algorithm will focus on model-
ing the normal cases. Hence, the mined process model will require considerable
modifications in order to fit anomalous cases leading to a high alignment score.
According to this idea, the authors propose an anomaly detection approach that
samples process cases from a discovered process model. If a case in the original
event log does not correspond to one of the sampled cases, it is flagged as an
anomaly. Building on this, Bezerra et al. introduce two parameters, fitness model
degree, and appropriateness of a process model, in order to formalize the degree
of an anomaly [3] and introduce two new variants of the anomaly detection ap-
proach, including a threshold and an iterative version [2]. Both of the approaches
make use of the conformance fitness of each case according to the discovered
model. Similarly, in the Process Discovery Contest, the detection of anomalous
cases is used to measure the quality of the process discovery approaches [14, 15].
Each process discovery approach is first trained on a training event log before
assessing the F1-Score over a test log with normal and anomalous process cases,
i.e., process cases that fit or do not fit a hidden process model.

More recently, a variety of model-less anomaly detection approaches have
been developed that are able to detect anomalous process behavior without
requiring an explicit process model. Böhmer et al. proposed a multivariate tech-
nique that builds up an extended likelihood graph on multiple event attributes
in order to identify the anomalies [4]. Nolle et al. introduced three different deep
learning-based anomaly detection approaches. In [7] they proposed a deep au-
toencoder to capture anomalous process cases. First, an autoencoder is trained
by mapping each process case to itself. Afterward, the reconstruction error is
calculated for each case. If the reconstruction error succeeds a predefined thresh-
old, the case is flagged as an anomaly. Then, the same authors proposed BINET,
which consists of a next step prediction model and a heuristic [8]. The heuristic
determines if the deviation of the model predictions is a significant sign of a po-
tential anomaly. Last, the same authors proposed DeepAlign [10], an extension
of the previous approach that can also be used to correct the anomalous process
behavior. The core components of the model are bidirectional LSTMs and beam
search. Finally, Pauwels et al. developed an anomaly detection method based on
Bayesian Networks [11].

7 Conclusion

This paper analyzed multivariate anomaly detection for detecting anomalous
process instances (case-based anomaly detection) through LSTM neural net-
works. We showed that by various refinements in terms of data processing, neu-
ral network architecture, and anomaly score computation, we could improve the
anomaly detection quality significantly. We evaluated the proposed approach
against existing approaches on 328 different real-life and synthetic event logs.
We were able to improve the mean F-Score on the PDC 2020 by 6% and the
PDC 2021 by 2.3%. In comparison with the machine learning-based models,
we achieved a performance gain of 26.1%. Additionally, the paper provides a

12 Lahann et al.

benchmark for anomaly detection of process cases and can serve as a baseline
for further research.

In the future, we plan to investigate which design decisions lead to the highest
performance improvements and which process features and anomalous behaviors
are most difficult for neural networks to understand. Furthermore, we want to
extend the anomaly score computation to support continuous attributes.

References

1. Bezerra, F., Wainer, J.: Anomaly detection algorithms in logs of process aware
systems. In: Proceedings of the 2008 ACM symposium on Applied computing. pp.
951–952 (2008)

2. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of
process aware information systems. Information Systems 38(1), 33–44 (2013)

3. Bezerra, F., Wainer, J., van der Aalst, W.M.: Anomaly detection using process
mining. In: Enterprise, business-process and information systems modeling, pp.
149–161. Springer (2009)

4. Böhmer, K., Rinderle-Ma, S.: Multi-perspective anomaly detection in business pro-
cess execution events. In: OTM Confederated International Conferences” On the
Move to Meaningful Internet Systems”. pp. 80–98. Springer (2016)

5. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. In: Azevedo, L., Cabanillas, C. (eds.) Proceedings of the BPM Demo
Track 2016 Co-located with the 14th International Conference on Business Process
Management (BPM 2016), Rio de Janeiro, Brazil, September 21, 2016. CEUR
Workshop Proceedings, vol. 1789, pp. 1–6. CEUR-WS.org (2016)

6. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of
tricks for image classification with convolutional neural networks (2018).
https://doi.org/10.48550/ARXIV.1812.01187, https://arxiv.org/abs/1812.01187

7. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process
anomalies using autoencoders. Machine Learning 107(11), 1875–1893 (2018)

8. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Binet: Multi-perspective
business process anomaly classification. Information Systems 103, 101458 (2022)

9. Nolle, T., Seeliger, A., Mühlhäuser, M.: Binet: multivariate business process
anomaly detection using deep learning. In: International Conference on Business
Process Management. pp. 271–287. Springer (2018)

10. Nolle, T., Seeliger, A., Thoma, N., Mühlhäuser, M.: Deepalign: Alignment-based
process anomaly correction using recurrent neural networks. In: International Con-
ference on Advanced Information Systems Engineering. pp. 319–333. Springer
(2020)

11. Pauwels, S., Calders, T.: An anomaly detection technique for business processes
based on extended dynamic bayesian networks. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. pp. 494–501 (2019)

12. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on mon-
itoring real behavior. Information Systems 33(1), 64–95 (2008)

13. Smith, L.N.: Cyclical learning rates for training neural networks (2017)
14. Verbeek, E.: Process discovery contest 2020 (May 2021)
15. Verbeek, E.: Process discovery contest 2021 (Oct 2021)
16. Zimek, A., Schubert, E.: Outlier detection. In: Encyclopedia of Database Systems.

Springer (2017)

