
Attribute-Based Conformance Diagnosis:
Correlating Trace Attributes with Process

Conformance

Michael Grohs1[0000−0003−2658−8992] and Jana-Rebecca
Rehse1[0000−0001−5707−6944]

University of Mannheim, Mannheim, Germany
{mgrohs@mail.,rehse@}uni-mannheim.de

Abstract. An important practical capability of conformance checking
is that organizations can use it to alleviate potential deviations from the
intended process behavior. However, existing techniques only identify
these deviations, but do not provide insights on potential explanations,
which could help to improve the process. In this paper, we present
attribute-based conformance diagnosis (ABCD), a novel approach for
correlating process conformance with trace attributes. ABCD builds on
existing conformance checking techniques and uses machine learning
techniques to find trace attribute values that potentially impact the
process conformance. It creates a regression tree to identify those
attribute combinations that correlate with higher or lower trace fitness.
We evaluate the explanatory power, computational efficiency, and
generated insights of ABCD based on publicly available event logs. The
evaluation shows that ABCD can find correlations of trace attribute
combinations with higher or lower fitness in a sufficiently efficient way,
although computation time increases for larger log sizes.

Keywords: Process Mining · Conformance Checking · Correlations ·
Trace Attributes · Root Cause Analysis.

1 Introduction

The goal of conformance checking is to analyze the relation between the intended
behavior of a process, captured in a process model, and the observed behavior
of a process, captured in an event log [7]. It generates insights on where and
how the observed behavior aligns with or deviates from the intended behavior.
Organizations can use these insights for example to check whether their process
execution is compliant with the originally designed process [22]. Over the last
years, multiple conformance checking techniques have been developed, including
rule checking, token-based replay, and alignments [7]. The techniques differ with
regards to their algorithmic approach, computational complexity, and generated
results, but they have one output in common: A measure of the conformance
between log and model, called fitness, which quantifies the capability of a model
to replay the behavior observed in the log [22].



2 M. Grohs and J. Rehse

One problem of existing conformance checking techniques is that they do
not enable practitioners to reach their underlying goal, which is to improve
the process [19]. As an example, consider a loan application process in a bank,
where the application of a conformance checking algorithm yielded an overall
fitness value of 0.8. From this number, a process analyst can conclude that
some deviations between log and model occurred, but they do not know where,
how, and—most importantly—why the process execution deviated and what the
effects of the potential problem are. Therefore, explaining and understanding the
underlying causes of conformance problems is an important part of leveraging the
practical benefits of conformance checking [22]. Existing conformance checking
techniques focus only on the identification of deviations and do not provide
any potential reasons for their occurrence [5], although this would be a vital
prerequisite for any deeper process analysis. For our exemplary loan application
process, if the process analyst knows that loans with a higher amount more likely
deviate from the intended process, they could specifically analyze those process
instances to find and eventually address the root cause of those deviations.

In this paper, we present a novel approach for finding correlations between
process conformance and trace attributes. This approach, called attribute-based
conformance diagnosis (ABCD), builds on the results of existing conformance
checking techniques and uses machine learning to find trace attribute values
that potentially impact the conformance. Specifically, it creates a regression
tree to identify those attribute combinations that correlate with higher or lower
trace fitness. These correlations can be considered as potential explanations for
conformance differences and therefore as a starting point for further analysis
steps to find and address the causes of lower process conformance. ABCD
is (1) inductive, i.e., it requires no additional domain or process knowledge,
(2) data-driven, i.e., it requires only an event log and a process model as input,
(3) universally applicable, i.e., it does not depend on process-specific characteris-
tics, and (4) flexible, i.e., it can be configured to fit a specific case.

In the following, the ABCD approach is introduced in Sect. 2. Its explanatory
power, computational efficiency, and potential practical insights are evaluated
based on publicly available event logs in Sect. 3. We discuss related work in
Sect. 4 and conclude with a discussion of limitations and future work in Sect. 5.

2 Approach

The goal of the ABCD approach is to find attribute value combinations in an
event log that correlate with differences in conformance. Therefore, it analyzes
trace attributes and correlates them with trace-level fitness, which is the most
common way to measure conformance [22]. A schematic overview of ABCD
can be found in Fig. 1. The approach requires two inputs, an event log and a
corresponding process model, and consists of two major steps. In the first step,
explained in Sect. 2.1, we enrich the event log with the trace-level fitness values
with regard to the provided process model. This enriched log serves as input
for the second step, called Inductive Overall Analysis (IOA) and explained in



Attribute-Based Conformance Diagnosis 3

Fig. 1. Illustration of the Attribute-Based Conformance Diagnosis (ABCD) Approach

Sect. 2.2. It determines the correlations between combinations of attribute values
and process conformance. Therefore, it computes a regression tree. Regression
trees are a data mining technique that relate a set of independent variables, in
our case all trace attributes in an event log, to a real-valued dependent variable,
in our case , i.e., average trace fitness in a log. To build the regression tree, the
event log is iteratively split into sub-logs, based on trace attribute values. Each
split defines a new node in the tree. These nodes are then used to predict the
value of the dependent variable [10]. To find the best fitting tree, the algorithm
minimizes the sum of errors in the prediction. An error is the difference between
the predicted value in a leaf node and the actual value of the respective sub-log.
The percentage of the true variation that can be explained by the predictions,
i.e., 1 minus the sum of errors, is the coefficient of determination R2, which can
be used to determine the prediction quality of the regression tree [9].

2.1 Log Enrichment

Because the goal of ABCD is to correlate trace attributes with variations in
conformance, it needs the trace-level fitness to perform any further analysis.
Therefore, we compute the fitness of each trace with regard to the provided
process model and add the value to the event log as a trace attribute.
The user can choose between token-replay fitness and alignment-based fitness
[7]. The latter is the default choice used in the remainder of this paper.
This parametrization allows users to flexibly choose the best-suited technique,
for example choosing token-based fitness if alignments require too much
computation time.

After computing the trace fitness value, we also enrich each trace by its overall
duration, defined as the time difference between start and end event in a timely
ordered trace. This ensures that at least one trace attribute will always occur in
the log. We decided on the trace duration as the default trace attribute, because
it can be computed for every (time-stamped) event log and because the relation
between process performance and process conformance is potentially relevant for
all processes, independent of their context [24].

2.2 Inductive Overall Analysis

Following the log enrichment, Inductive Overall Analysis (IOA) determines
correlations between combinations of attribute values and process conformance.



4 M. Grohs and J. Rehse

Fig. 2. Illustration of Inductive Overall Analysis (IOA)

Therefore, it first preprocesses the data and then constructs a regression tree
that uses the trace attribute values as determinants for the fitness value. Fig. 2
shows the schematic overview. IOA consists of two steps: preprocessing the data
and building the regression tree.
Data Preprocessing. For the data pre-processing, we distinguish between
categorical and numerical attributes. Due to requirements of the tree algorithm,
pre-processing is necessary for both. First, because a regression tree can only
handle numerical attributes, categorical variables need to be encoded to be
used as a determinant. For this purpose, we use One-Hot-Encoding, which
constructs one binary trace attribute per categorical attribute value. Second, the
regression tree algorithm cannot handle missing data. If there are values missing
for numerical attributes, we need to perform imputation, i.e., replace missing
values with other values [31]. Assuming that raw data is the best representation
of reality, no imputation will be the default. If it must be performed due to
missing values, potential imputation strategies include replacing missing values
with the mean, the median, the most frequent value, or a constant value. For
IOA, users can select the imputation strategy as a parameter. Additional to
no imputation, we allow for imputing with the most frequent value, a constant
value of 0, the mean, and the median value. Imputation will only be necessary for
numerical attributes since the encoding transforms the categorical attributes into
binary attributes with no missing values. Missing values in categorical attributes
will therefore lead to a 0 in all binary attributes.
Regression Tree Building. After the preprocessing, we build the regression
tree. The goal is to find those combinations of attribute values that best predict
variations in conformance. Therefore, the regression tree consists of nodes that
split the event log based on one attribute value. A splitting node includes a
condition for the attribute value, e.g., a duration smaller than 4 days. For all
traces below the splitting node on the left side of the tree, the node condition is
true. For all traces below on the right side, it is false. Leaf nodes do not state
a condition, either because the tree has reached its maximum depth or because
an additional split will not improve the result. Traversing the tree from root to



Attribute-Based Conformance Diagnosis 5

leaves, each node divides the log according to its condition, iteratively dividing
the log into one sub-log per leaf node. The sub-log of an internal node is the
union of all sub-logs of its children. Each node reports on the average fitness for
the sub-log created by all splits above it, which is used as a predictor for the
fitness of the individual traces. The tree algorithm chooses attribute values and
conditions by minimizing the total errors in the prediction, i.e., the sum of the
differences between the true fitness value of each trace and the average fitness
in the leaf node. The final tree consists of splitting nodes and leaf nodes. The
leaf nodes indicate the overall prediction for the sub-logs created by the splitting
nodes. The combination of conditions leading down to a leaf node indicates a
combination of attribute values that well predicts the fitness of the given sub-log,
i.e., it consistently determines the conformance level of these traces.

For building the tree, we use the sklearn-environment in Python1. As a
parameter, we require the maximum tree depth, i.e., the number of node layers
the algorithm may use to split the log. When choosing this depth, we need
to balance the explanatory power of the tree with its visual clarity and the
granularity of sub-logs. The returned regression tree includes those attribute
value combinations that are correlated with higher or lower fitness and thus
offer a potential explanation for differences in conformance.

3 Evaluation

We implemented the ABCD approach in Python.2 Using this implementation, we
conduct an evaluation to show that ABCD has explanatory power, is computa-
tionally efficient, and generates practical insights. For our evaluation, we used
three publicly available data sets consisting of seven event logs (see Tab. 1):
MobIS-Challenge 2019 [26]. This event log from a travel management process
contains trace attributes. It also comes with a matching process model that
describes that process and can be used as a reference for conformance checking.
BPI Challenge (BPIC) 2020 [30]. This collection of five event logs, also
from a travel management process, contains many trace attributes, which makes
it well suitable to test ABCD’s abilities to provide insights. Because there is
no to-be model available for this process, we applied the PM4Py auto-filter on
the event log to filter all common variants3 and discovered a model using the
Inductive Miner. This way, we check conformance against the most frequent
behavior.
BPI Challenge (BPIC) 2017 [29]. This event log from a loan application
process is comparably large, which makes it well suitable to test ABCD’s compu-
tational feasibility. Because there also is no to-be model available for this process,
we discovered one using the above-described method.
1 https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeRegressor.html

2 https://gitlab.uni-mannheim.de/mgrohs/attribute-based-conformance-
diagnosis/-/tree/main

3 https://pm4py.fit.fraunhofer.de/documentation



6 M. Grohs and J. Rehse

Table 1. Public Event Logs used for Evaluation

ID Dataset Name Traces Events Trace attributes
(1) MobIS MobIS 6,555 83,256 Duration (Dur), Costs
(2) BPIC 2020 Domestic

Declarations
10,500 56,437 Dur, Amount (Amn), Budget

Number (BudNo), Declaration
Number (DeclNo)

(3) BPIC 2020 International
Declarations

6,449 72,151 Dur, Adjusted Amn, Amn,
BudNo, DeclNo, Original Amn,
Act. No., Org. Entity, Req. Bud.

(4) BPIC 2020 Request for
Payment

6,886 36,796 Dur, Act., Cost Type, Org.
Entity, Project, Req. Amon.,
Task, Rfp No.

(5) BPIC 2020 Prepaid Travel
Costs

2,099 18,246 Dur., Act., Cost Type, Org.
Entity, Project No., Bud. No.,
Red. Budget, Project, Task

(6) BPIC 2020 Travel Permit 7,065 86,581 Dur., Bud. No., Cost Type,
Org. Entity, Overspent Amn,
Project, Req. Amn

(7) BPIC 2017 Loan
Application

31,509 1,202,267 Dur, Application Type, Loan
Goal, Requested Amn

3.1 Explanatory Power

To measure the explanatory power of ABCD, we use the coefficient of
determination R2, which shows the goodness of fit of the regression [8]. To
determine the influence of our parameters, our evaluation setting varies the
imputation strategy (none, mean, median, zero, constant), and the tree depth
(from 3 to 7; a larger tree would not be visually clear anymore).

We first inspect the influence of the imputation strategy. This is shown in Tab.
2, where we list the R2 for the four imputation strategies for the MobIS event log.
No imputation is not possible for this event log due to missing attribute values.
We do see not see any difference in R2 for the different imputation strategies
in the MobIS data. This is also the case for all other logs.4 We can conclude
that the imputation strategy has no effect on the explanatory power of ABCD.
However, this might be different for highly variable real-life event logs, so the
imputation option is necessary to remain universally applicable.

Tab. 3 shows the R2 values for all event logs and tree depths. As expected,
R2 grows with tree depth, due to more allowed splits in the tree. This increase
is log-dependent and ranges between 1% for log (2) and 13% for log (3). It
is generally impossible to determine a universal threshold for a good R2 value
[25]. However, we see that ABCD is capable of explaining at least one fifth of
the fitness variation in all logs and as much as 84% in one, meaning that it is
capable of finding correlations of data attributes with (non-)conformance. All in
all, our evaluation showed that for our inspected datasets, ABCD has moderate
to high explanatory power and is not sensitive to imputation and tree depth.
4 The full evaluation documentation is available in the GitLab repository



Attribute-Based Conformance Diagnosis 7

Table 2. R2 for the MobIS Data Set for
Working Imputation Strategies and Tree
Depths 3 to 7

Log Imp. 3 4 5 6 7
(1) mean 0.163 0.178 0.195 0.203 0.218
(1) median 0.163 0.178 0.195 0.203 0.218
(1) zero 0.163 0.178 0.195 0.203 0.218
(1) freq. 0.163 0.178 0.195 0.203 0.218

Table 3. R2 for Tree Depths 3 to 7

Log Imp. 3 4 5 6 7
(1) all 0.163 0.178 0.195 0.203 0.218
(2) all 0.744 0.747 0.75 0.753 0.756
(3) all 0.303 0.344 0.374 0.405 0.433
(4) all 0.819 0.824 0.829 0.835 0.84
(5) all 0.483 0.513 0.54 0.569 0.596
(6) all 0.416 0.434 0.448 0.462 0.476
(7) all 0.322 0.336 0.348 0.357 0.368

3.2 Computational Efficiency

For assessing the computational efficiency of ABCD, we measure the execution
times, separated into the enrichment step in Tab. 4 and the analysis step in
Tab. 5. Each reported value in those tables is an average of three separate
executions, to account for outliers. For the analysis time, we only report
the average execution time over all imputation strategies since there were no
significant deviations between them.

Table 4. Enrichment Times

Log Traces Events Attr. Time [s]
(1) 6,555 83,256 2 33.75
(2) 10,500 56,437 5 2.26
(3) 6,449 72,151 18 61.98
(4) 6,886 36,796 9 1.38
(5) 2,099 18,246 17 3.65
(6) 7,065 86,581 168 859.47
(7) 31,509 1,202,267 4 9,216.35

We see that the enrichment
time increases with the number of
traces and the number of events,
because especially alignments become
computationally expensive [7].
Additionally, the number of trace
attributes negatively influences the
enrichment time, which is visible for
the Travel Permit log (6). At most,
the enrichment takes 2.6 hours for the
largest log (7).

Table 5. Average Computation Time for IOA over
All Imputation Strategies for Tree Depths 3 to 7 in s

Log 3 4 5 6 7
(1) 64.61 65.13 64.98 65.69 64.77
(2) 180.99 180.02 181.69 183.07 187.44
(3) 132.15 132.71 132.45 134.88 132.98
(4) 99.51 100.42 99.78 100.14 101.1
(5) 15.95 16.03 16.0 16.19 16.33
(6) 602.4 618.54 591.85 590.82 651.73
(7) 1,395.65 1,357.93 1,353.86 1,352.12 1,375.79

Like the enrichment
time, the analysis time for
IOA depends heavily on the
number of traces and the
number of trace attributes,
again visible for logs (6)
and (7). However, this
increase is less significant
compared to the increase
in enrichment time and the
maximum duration is below
25 minutes. In case of more
trace attributes, we consider more independent variables and in case of many
traces we have a larger sample size, both increasing the explanatory power of
ABCD. We conclude that ABCD is computationally feasible even for larger
logs, although the execution times are a potential drawback. Neither imputation
strategy nor tree depth have a significant impact on the analysis time.



8 M. Grohs and J. Rehse

Overall, we see a negative influence of the log size on the computational
efficiency. Still, execution takes less than 3 hours for event logs with up to 1.2
million events. Considering the potential value of ABCD, the execution time does
not limit its applicability. As alignment are the main cause for long executions,
larger event logs could still be analyzed by means of a different fitness technique.

3.3 Practical Insights

The main benefit of ABCD is that it generates process insights without prior
knowledge, which is supposed to provide value for practitioners. These insights
are correlations between trace attributes and process conformance that serve
as a starting point for further process analyses. To demonstrate some of these
insights, we further examine the regression trees generated for the event logs. It
is important to note that for all event logs except MobIS, the process model is
generated based on variant filters. This means that conformance and fitness are
based on the most common variants and not on a constructed process model. In
the following, conformance of the BPI logs has to be interpreted as conformance
to the most common variants. Detailed information about the practical insights
provided by ABCD can be derived from the computed regression trees for all
logs (available in the GitLab repository).

Fig. 3. Exemplary Regression Tree for the MobIS Log

MobIS. An exemplary
regression tree with
depth 3 is provided
in Fig. 3. It splits the
log into six different
sub-logs represented
by the six leaf nodes.
For example, the top
node splits the log based
on whether the trace
has a duration above 0
(more than one event).
The color indicates the
fitness value: high fitness
leads to darker color. We
see that short duration
above 0 correlates with better conformance. For traces with one event, lower
costs correlate with slightly better fitness.
BPI Challenge 2020. Not knowing the trace ID, e.g., the declaration number,
correlates with lower conformance in logs (2), (3), (4), and (5). For all five logs,
the duration is an important feature in the trees, which shows the value of
separately enriching this attribute. Longer traces conform better in log (2), but
they conform worse in log (4). Another relevant trace attribute is the requested
amount or budget, which also correlates with lower conformance in most cases.
BPI Challenge 2017. Longer traces conform better for log (7). Further, an
unknown loan goal and a smaller requested amount correlate with lower fitness.



Attribute-Based Conformance Diagnosis 9

We conclude that ABCD can generate practical insights in form of
correlations between trace attributes and trace fitness without relying on process
or domain knowledge. These correlations can serve as starting points to identify
causalities that explain conformance deviations. We show that it finds significant
attribute values correlating with worse conformance, both for available to-be
models and for mined models that represent the most common behavior. The
identified correlations can be used to further examine the deviations that occur
in the sub-logs created by the regression tree nodes. Comparing all sub-logs of
MobIS data based on the leaf nodes in Fig. 3 could yield additional insights into
conformance variation, including, e.g., the location and type of deviation that
occurs in the individual sub-logs. For example, we see that for the leaf node
with size 184, the deviations occur primarily in the reporting part of the travel
management process.

4 Related Work

In this section, we elaborate on work related to the ABCD approach. Many
other approaches combine data attributes and conformance checking. For
example, data attributes are used while performing the conformance check
to incorporate other perspectives into the optimal alignment of data-enriched
process models and event logs [22,20,21]. Data attributes can also be used to
define response moves (i.e., log moves that change data attributes that have been
incorrectly changed by another log move in advance) [28] and to perform multi-
perspective conformance checks on declarative models [6]. In all approaches, the
data attributes refine the check itself but are not used to potentially explain
conformance problems.

Data attributes can also be used to create sub-logs or sub-models in so called
process cubes. Users can then analyze the differences between the sub-logs or sub-
models and draw conclusions about what data attributes lead to the differences
[1]. Main applications are process discovery [14,17] and performance analysis
[4,2]. Applying process cubes for various purposes implicitly tries to use data
attributes to explain differences in an event log or process model, often related to
performance. This resembles attribute-based conformance diagnosis, but focuses
on aspects other than conformance and metrics other than fitness.

The research stream that resembles ABCD the most closely is called root
cause analysis (RCA). It aims to identify causal structures between different
variables and show the influence these variables have on each other [23]. This
can be achieved by using structural equation models based on data attributes
[23], Granger-causal feature pairs, conventional correlations [3,18], or clustering
techniques [12]. Also, to find reasons for deviations in processes, fuzzy mining
and rule mining with data attributes can be applied without performing any
conformance check [27]. Consequently, no deviations against a to-be model are
investigated.

Another prominently used RCA technique are regression trees [10,16].
In process mining, regression trees have been applied to detect causes for



10 M. Grohs and J. Rehse

performance issues [16], for example by analyzing data attributes not referring
to the control-flow [10]. Also, tree structures can be applied to identify causes
for control-flow deviations located through sub-group discovery [11]. However,
all approaches require domain knowledge to identify deviations or validate root
causes after the automated analysis. Further, current approaches do not use
conformance as the dependent variable. The automation is limited and the
approaches are very specific [10].

Correlation-based RCA is also supported by process mining tools like Appian
Process Mining, ARIS PM, Celonis, Lana Labs and Mehrwerk Process Mining.
Those tools among others have been identified as relevant in a recent study [15].
However, none of them include a to-be model in the analysis but try to find root
causes for variations in the data instead variations in conformance.

ABCD further resembles approaches like [11,12] where correlations between
data attributes and process flow metrics other than conformance are identified.
However, no to-be models are included in the analysis and therefore no
conformance checking can be performed.

5 Discussion & Conclusion

The goal of the ABCD approach is to identify combinations of trace attribute
values that correlate with variations in process conformance. Therefore, we first
enrich the event log with fitness values. After that, we investigate the correlation
between process conformance and attribute combinations. Our evaluation shows
that ABCD is able to generate practical insights with explanatory power in
an acceptable computation time. ABCD is inductive because it does not rely
on domain knowledge and data-driven because it only needs an event log and a
corresponding process model. It is universally applicable because is only depends
on generic event log attributes, such as timestamps, and flexible because users
can parametrize it to fit their specific case.

ABCD is subject to multiple limitations, which should be addressed in future
research. First and most importantly, ABCD identifies correlations between
attribute values and process conformance. It is not capable to determine whether
and how the identified values actually caused the process to deviate. Instead, they
are meant as an orientation for practitioners that try to improve the conformance
of their process. In future research, ABCD could be extended by causal analysis
techniques that are capable of identifying causal relations between attribute
values and process conformance. Currently, the causal identification is performed
manually based on the found correlations (i.e., potential explanations).

Second, the computation times indicate that the enrichment might take long
for larger event logs, mainly due to the duration of the alignments. To still
make ABCD applicable to larger event logs, we could compute the trace fitness
with other techniques such as token-based replay or heuristics [7]. This was
not necessary for our evaluation, because the duration of under three hours at
maximum was acceptable, but it might become necessary for larger data sets.



Attribute-Based Conformance Diagnosis 11

Third, we enriched traces by their duration only. This attribute was useful
since the case study found it to be a potential explanatory factor in many
regression trees. However, additional enrichment by other generic trace attributes
might further increase the explanatory power. Possibilities are the weekday in
which the trace started or the number of other active cases at the point of
initiation. Such attributes could also relate to events, such as the occurrence of
certain activities in a trace or the number of executions of the same activity.
More sophisticated encoding approaches might be used [13].

Fourth, we limited our dependent variable to fitness. Therefore, we treat
different causes for fitness differences similar. However, it might be better to
include deviation information to find root causes of these fitness differences.

A limitation of our evaluation is that no to-be models were available for the
BPI logs, meaning that our evaluation results have to be interpreted carefully. We
tried to mitigate this limitation by applying ABCD in a case with to-be model.
However, we acknowledge that the insights of ABCD heavily depend on the
availability of these models. This could be addressed by data-driven approaches
for deriving to-be models, reducing the necessary effort for the organizations.

Finally, ABCD only identifies that a certain attribute value or combination of
attribute values is correlated with process conformance, but it does not explain
how the conformance is influenced. As discussed in Sect. 3.3, the next step could
be to incorporate a post-processing that investigates the alignments of the sub-
logs generated in the leaf nodes and analyzes where and how a deviation occurs.

References

1. van der Aalst, W.: Process cubes: Slicing, dicing, rolling up and drilling down event
data for process mining. In: AP-BPM 2013. Springer (2013)

2. van der Aalst, W., Guo, S., Gorissen, P.: Comparative process mining in education:
An approach based on process cubes. In: SIMPDA 2015. Springer (2013)

3. Adams, J.N., van Zelst, S., Quack, L., Hausmann, K., van der Aalst, W., Rose, T.:
A framework for explainable concept drift detection in process mining. In: BPM
2021. Springer (2021)

4. Bolt, A., de Leoni, M., van der Aalst, W., Gorissen, P.: Business process reporting
using process mining, analytic workflows and process cubes: A case study in
education. In: SIMPDA 2015. pp. 28–53. Springer (2017)

5. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative business
process models in data-aware scenarios. Expert Systems with Applications 41,
5340–5352 (2014)

6. Burattin, A., Maggi, F., Sperduti, A.: Conformance checking based on multi-
perspective declarative process models. Expert Systems with Applications 65, 194–
211 (2016)

7. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

8. Cheng, C.L., Shalabh, Garg, G.: Coefficient of determination for multiple
measurement error models. Journal of Multivariate Analysis 126, 137–152 (2014)

9. Chicco, D., Warrens, M., Jurman, G.: The coefficient of determination r-squared
is more informative than smape, mae, mape, mse and rmse in regression analysis
evaluation. PeerJ. Computer science (2021)



12 M. Grohs and J. Rehse

10. De Leoni, M., van der Aalst, W., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Information Systems 56, 235–257 (2016)

11. Delias, P., Grigori, D., Mouhoub, M.L., Tsoukias, A.: Discovering characteristics
that affect process control flow. In: EWG-DSS 2014. pp. 51–63. Springer (2015)

12. Delias, P., Lagopoulos, A., Tsoumakas, G., Grigori, D.: Using multi-target feature
evaluation to discover factors that affect business process behavior. Computers in
Industry 99, 253–261 (2018)

13. Di Francescomarino, C., Ghidini, C.: Predictive Process Monitoring, pp. 320–346.
Springer, Cham (2022)

14. Fani Sani, M., van der Aalst, W., Bolt Irondo, A., García-Algarra, J.: Subgroup
discovery in process mining. In: BIS 2017. pp. 237–252. Springer (2017)

15. FAU, Chair of Digital Industrial Service Systems: Process Mining Software
Comparison (2020), https://www.processmining-software.com/tools/

16. Ferreira, D., Vasilyev, E.: Using logical decision trees to discover the cause of
process delays from event logs. Computers in Industry 70, 194–207 (2015)

17. Gupta, M., Sureka, A.: Process cube for software defect resolution. In: APSEC
2014. pp. 239–246. IEEE (2014)

18. Hompes, B., Maaradji, A., La Rosa, M., Dumas, M., Buijs, J.C., van der Aalst,
W.: Discovering causal factors explaining business process performance variation.
In: CAiSE 2017. Springer (2017)

19. Horita, H., Hirayama, H., Tahara, Y., Ohsuga, A.: Towards goal-oriented
conformance checking. In: SEKE 2015. pp. 722–724 (2015)

20. Mannhardt, F., de Leoni, M., Reijers, H., van der Aalst, W.: Balanced multi-
perspective checking of process conformance. Computing 98, 407—-437 (2016)

21. Mozafari Mehr, A., Medeiros de Carvalho, R., van Dongen, B.: Detecting privacy,
data and control-flow deviations in business processes. In: CAiSE 2021. Springer
(2021)

22. Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining:
Comparing Observed and Modeled Processes. Springer (2016)

23. Qafari, M., van der Aalst, W.: Case level counterfactual reasoning in process
mining. In: CAiSE 2021. pp. 55–63. Springer (2021)

24. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33, 64–95 (2008)

25. Saunders, L., Russell, R., Crabb, D.: The Coefficient of Determination: What
Determines a Useful R2 Statistic? Investigative Ophthalmology & Visual Science
53, 6830–6832 (2012)

26. Scheid, M., Rehse, J.R., Houy, C., Fettke, P.: Data set for mobis challenge 2019
(2018)

27. Swinnen, J., Depaire, B., Jans, M.J., Vanhoof, K.: A process deviation analysis –
a case study. In: BPM 2011. pp. 87–98. Springer (2012)

28. Tsoury, A., Soffer, P., Reinhartz-Berger, I.: How well did it recover? impact-aware
conformance checking. Computing 103, 3 – 27 (2021)

29. van Dongen, B.: BPI challenge 2017. https://data.4tu.nl/articles/dataset/
BPI_Challenge_2017/12696884 (2017)

30. van Dongen, B.: BPI challenge 2020. https://data.4tu.nl/collections/_/
5065541/1 (2020)

31. Zhang, Z.: Missing data imputation: Focusing on single imputation. Annals of
translational medicine 4 (2016)


