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Abstract. Predictive process monitoring techniques leverage machine
learning (ML) to predict future characteristics of a case, such as the pro-
cess outcome or the remaining run time. Available techniques employ
various models and different types of input data to produce accurate pre-
dictions. However, from a practical perspective, explainability is another
important requirement besides accuracy since predictive process moni-
toring techniques frequently support decision-making in critical domains.
Techniques from the area of explainable artificial intelligence (XAI) aim
to provide this capability and create transparency and interpretability
for black-box ML models. While several explainable predictive process
monitoring techniques exist, none of them leverages textual data. This is
surprising since textual data can provide a rich context to a process that
numerical features cannot capture. Recognizing this, we use this paper
to investigate how the combination of textual and non-textual data can
be used for explainable predictive process monitoring and analyze how
the incorporation of textual data affects both the predictions and the ex-
plainability. Our experiments show that using textual data requires more
computation time but can lead to a notable improvement in prediction
quality with comparable results for explainability.

Keywords: Predictive Process Monitoring - Explainable Artificial In-
telligence (XAI) - Natural Language Processing - Machine Learning

1 Introduction

In recent years, machine learning (ML) techniques have become a key enabler for
automating data-driven decision-making [14]. Machine learning has also found
its way into the broader context of business process management. Here, an im-
portant application is to predict the future of business process executions - com-
monly known as predictive business process monitoring [7]. For example, a ma-
chine learning model can be used to predict the process outcome [20], the next
activity [9] or the remaining time of a running process [21].

From a practical point of view, one of the critical shortcomings of many
existing predictive process monitoring techniques is that their results are not
explainable, i.e.; it remains unclear to the user how or why a certain prediction
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was made [I7]. Especially in critical domains, such as healthcare, explainability,
therefore, has become a central concern. Techniques in the area of explainable ar-
tificial intelligence (XAI) aim to shed light on black box ML models and provide
transparency and interpretability [I]. Recognizing this, several so-called explain-
able predictive process monitoring techniques have been proposed [TO/I8/T4].
They rely on well-established explainability approaches such as SHAP [12] and
LIME [16] to support users in better understanding the predictions of the em-
ployed techniques.

What existing explainable predictive process monitoring techniques have in
common is that they solely rely on numerical and categorical attributes and do
not leverage textual data. This is surprising given that textual data often pro-
vides rich context to a process. Recognizing the potential value of textual data
for explainable predictive process monitoring, we use this paper to empirically
explore how the combination of textual and non-textual data affects the predic-
tion quality, the explainability analysis, and the computational effort. To this
end, we propose two novel strategies to combine textual and non-textual data
for explainable predictive process monitoring and conduct extensive experiments
based on an artificial dataset.

The remainder of this paper is organized as follows: Section [2] illustrates
the problem and the potential of using textual data for explainable predictive
process monitoring. Section [3| elaborates on our study design. The code for all
experiments can be found on GitHuH¥ Section [4] presents the results. Section
discusses related work before Section [6] concludes our paper.

2 Problem Illustration

Predictive process monitoring techniques aim to predict the future state of cur-
rent process executions based on the activities performed so far and process
executions in the past [7]. Given a trace, we might, for instance, aim to predict
the outcome of a trace [20]. Depending on the context, such an outcome could
relate to the successful completion of a production process or the successful cur-
ing of a patient. Predicting the outcome of a process execution at an early stage
enables early interventions, such as allocating additional resources or taking a
different course of action still to reach the desired process outcome [22].

A central problem in process monitoring techniques leveraging ML is that it
is nearly impossible for humans to understand why a particular prediction was
made. This led to the development of techniques for explainable artificial intel-
ligence, which aim to produce more explainable models without deterioration of
the predictive performance. The goal is to help humans comprehend, effectively
use, and trust artificial intelligence systems [1]. One widely employed XAI strat-
egy is to produce a simpler, understandable model that approximates the results
of the original prediction model [I2] such as SHAP [10/I8] or LIME [14] which
are commonly used in the context of predictive process monitoring.

4 https://github.com/christianwarmuth/explainable-predictive-process-mon
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All existing techniques for explainable predictive process monitoring have in
common that they rely on numerical and categorical features only and do not
consider textual data. This is surprising since textual data often can provide rich
insights into the context of a process execution.

For example, consider a loan application process where customers may pro-
vide written statements about their financial situation, the purpose of the re-
quested loan, and details of the repayment plan. This data might allow to more
accurately predict whether the customer will pay back the loan and explain that
prediction better. Figure [I] illustrates such a setting using an exemplary event
log. We can see two cases where one applicant intends to spend the money on
a wedding and the other on a new car. From the bank’s perspective, this might
make quite a difference since purchasing a car results in a physical asset that
can be resold if the customer cannot pay it back.

case_id activity timestamp loan credit loan goal
amount | score description

| recently proposed
to my wifesol ...

1566432 Review Application 17.03.2022 13:18 1.000$ 0.93 /

1566432 Create Application 15.03.2022 15:04 1.000$ 0.93

1566432 Re-Negotiate Terms 17.03.2022 16:21 900$ 0.93 /

1566432 Application Accepted 23.03.2022 09:15 900$ 0.93 /

| am planning to buy

1748744 Create Application 16.03.2022 10:20 3.000$ 0.87
anew carand...

1748744 Review Application 17.03.2022 17:04 3.000% 0.87 /

Fig. 1: Exemplary Eventlog with textual context data

Recognizing the potential value of textual data in the context of explainable
predictive process monitoring, we use this paper to investigate how the combi-
nation of textual and non-textual data can be used for explainable predictive
business process monitoring and analyze how the incorporation of textual data
affects both the prediction quality and the explainability.

3 Study on the Impact of Textual Data on Explainable
Predictive Process Monitoring

In this section, we describe the design of our study to investigate the potential
of textual data for explainable predictive process monitoring. In Section [3.1] we
first explain the different strategies we use for combining textual and non-textual
data and the models chosen for their instantiation. In Section [3.2] we introduce
the dataset and its creation. In Section[3.3] we elaborate on the preprocessing and
in Section [3.4] we explain the training and explanation setup for the experiments.

3.1 Strategies and Models

Combining textual and non-textual data for explainable predictive process mon-
itoring is not trivial. That is because these different types of input data must
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be combined in a useful way for both model building and inference and the
explainability analysis. We propose two novel strategies:

Class Label or Probability Combination. Strategy one is to have two models (one
for the textual data and one specific for the non-textual data). For inference,
we can combine the class labels or the class probabilities output by the different
models for prediction on real input. We have two separate explainability analyses
as we have two individual models.

Model Buidling & Inference: Explainability Analysis:
Non-text data Text data

Model 2

|—)max() Feature Importance

Probability or Labels Model 2

Fig. 2: Conceptual architecture Strategy 1

Two-stage model. In a two-stage model approach, we have one model using solely
textual information as stage 1. We then filter out the n most important fea-
tures (e.g., words or smaller parts of a sentence) and feed them into the stage 2
model alongside non-textual information. The explainability analysis would be
performed on the second-stage model, considering both data sources.

Model Buidling & Inference: Text data Explainability Analysis:

n most important
features l

»

Non-text data

Fig. 3: Conceptual architecture Strategy 2

We needed to choose a model for each input type to instantiate these strate-
gies. For non-textual data, i.e., categorical and numerical input, we selected the
XGBoost model since it has been found to deliver the best average performance
in predictive process monitoring across various datasets with good scalability for
large datasets [20]. XGBoost uses gradient tree boosting, a common ensemble
learning technique (i.e., combining multiple machine learning models to derive
a prediction) which performs boosting on decision trees [d]. For textual data, we
use BERT (Bidirectional Encoder Representations from Transformers), a state-
of-the-art NLP model introduced by Devlin et al., which outperforms previous
methods on various NLP tasks and datasets. BERT can be described as a large
language model and belongs to the family of transformer models, the current
state-of-the-art models dealing with sequences [6].
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3.2 Dataset

There is no public event log dataset available that contains rich textual context
data. We, therefore, artificially augment an existing event log with textual data.
We chose to augment the BPIC17 dataset with textual context data on case
level in a parameterizable fashion with the LendingClub dataset. The BPI Chal-
lenge dataset from 2017 refers to a credit application process filed by customers
of a Dutch financial institution through an online system [§]. Overall, 12792 of
the 31413 loans were granted, which leaves us with a 0.41 minority class ra-
tio for this binary process outcome prediction problem on loan acceptance. The
LendingClub dataset we use for dataset augmentation only includes textual de-
scriptions of accepted loan applications, and we therefore have to redistribute
the existing textual loan goal descriptions [I1]. The redistribution is based on
the topics discussed by the loan applicants in their loan goal description. In an
initial data analysis, we identified the dominant topics using Latent Dirichlet
Allocation, an NLP technique to retrieve topics in text corpora [2]. We assigned
multiple topics to the two process outcomes and thus introduced in a controlled
fashion, for example, that people who talk about medical issues in their loan goal
description tend to be less likely to receive a loan offer. This approach creates
a latent structure for the machine learning model to pick up in the prediction
process. The topic attribution is performed based on the word occurrences per
topic in the document. After determining the topic memberships, the dataset is
augmented with the schematic depicted in Figure [4 with a varying parameter of
impurity, which adjusts the proportion of randomly assigned texts samples from
the dataset during the data augmentation process. The loan goal descriptions
are added to the original BPIC17 event log as an additional feature in the first
event for each case (the filing of the loan application).

accepted rejected impurity

0.0

0.2 I = topic group 1
0.4 = topic group 2
0.6 = random texts
0.8

1.0

Fig. 4: Dataset augmentation strategy with impurity parameter

With an impurity of zero, the accepted cases are solely assigned the textual
descriptions talking about topics in topic group 1. As the newly introduced
textual features do not correlate with existing features, we thus introduce an
additional dimension to differentiate between accepted and rejected cases. An
impurity of 0.0 allows for an apparent differentiation in textual features. In
contrast, an impurity of 1.0 would be a baseline with purely randomly sampled
text for both outcomes, so there is no way to differentiate between the outcomes
on the textual data. We henceforward define purity = 1 - impurity. For all
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experiments described in the following, we create 11 synthetically augmented
dataset variants with an impurity ranging from 0.0 to 1.0 in steps of 0.1. We
reduce measurement deviations by running each experiment 10 times and taking
the arithmetic mean.

3.3 Data Preprocessing

We conduct several preprocessing steps. First, we need to retrieve the class la-
bels “accepted” and “rejected” by choosing respective end activities. Then, we
need to transform the input such as it is suitable for the employed models. For
the XGBoost model, we have multiple events per case with various attributes
that change during the process executions. However, the XGBoost model expects
static (non-sequential input). We, therefore, preprocess the data to derive static
properties (i.e., one n-dimensional vector of features per case) and convert all
activities performed into categorical variables (encoding whether they occurred
or not). All further categorical variables are one-hot-encoded (resulting in one
additional feature per category level) to represent categorical variables using nu-
merical values. Numerical variables are then standardized by removing the mean
and scaling them to unit variance. Since we use BERT models for the textual
data, we do not need extensive preprocessing steps. The model can process the
textual data without significant assumptions and in considerable length. We,
however, need to tokenize the dataset before feeding it into the BERT model
with the model-specific tokenizer (in our case “BERT base model (uncased)”).

3.4 Model Training and Explanation

For strategy 1, we focus on combining the class attribution probability of an XG-
Boost Model and a BERT model, which is fine-tuned on our dataset. We then
decide per case which of the models’ predictions results in a more significant
absolute difference to the probability of 0.5 and, therefore, provide a clearer de-
cision. Both models are fed into the SHAP explainer module and are individually
explained. The SHAP framework is generally model-agnostic, but model-specific
optimizations for faster calculation exist. The SHAP framework relies for BERT
on the so-called PartitionExplainer and for XGBoost on TreeExplainer.

For strategy 2, we first use the identical BERT setup described above. How-
ever, we then perform an explainability analysis using the SHAP framework
to filter out the n most important words. We then feed these n features into
an XGBoost model as the second stage to derive the final prediction. As men-
tioned above, BERT will be explained using the SHAP PartitionExplainer. As
we use XGBoost in the second stage, we delete the stopwords before feeding
these features into the XGBoost model. XGBoost disregards a word’s left and
right context and its sequential nature. The n most important features of the
BERT explainability analysis after stopwords removal are represented using the
well-known TF-IDF approach before using the XGBoost model. For the explain-
ability analysis of strategy 2, we only consider the second-stage XGBoost model.
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4 Results

Effect on Model Performance. The two strategies and their performance
on the different augmented datasets are assessed using an Fl-score and ROC
AUC, which are common evaluation metrics for classification problems. We also
introduce another baseline with “baseline unilateral” predicting all inputs with
the majority class. Overall, we differentiate between strategies 1 and 2 on the
augmented dataset and a baseline model on non-textual data only. The results
in Figure [5] show that already for purity of above 0.1, the proposed strategies
lead to a net improvement of both ROC AUC and F1-score. The results suggest
that the strategies provide a benefit even at low levels of textual data purity and
improve the model performance. The combined incorporation of textual and
non-textual information shows value in light of a low level of textual data purity
as neither model alone can score these results. Using a pure textual model also
creates similar results for high textual data purity (around 1.0), as shown by the
pure BERT performance. Therefore, we can conclude that both strategies are
valuable in that they provide higher predictive quality, especially for low levels
of textual data purity, while the performance of the models converges for a very
high purity on textual features. There is a slight difference discernible between
strategies 1 and 2.

Effect on Rediscovery Rate. We calculate a metric of rediscovery to de-
termine whether the artificial latent structures introduced during the dataset
augmentation are uncovered and manifested in the explainability analysis. The
rediscovery rate will be measured by the overlap between the most important
textual features derived by the SHAP calculations and the input features used
during the dataset augmentation via word2vec vector similarity. Word2vec rep-
resents words in a high-dimensional vector space [I3]. We used the pre-trained
word2vec vectors based on the Google News datasetﬂ In our rediscovery calcu-
lation, we consider two words as rediscovered if the cosine similarity between
the two words on the pre-trained word2vec vectors is above 0.3 and if the mean
absolute feature importance via SHAP is above 0.005. Since both strategies show
high rediscovery rates, one can conclude that the right latent structures seem
to be found, and the strategies seem to work as intended. There is a difference
between strategies 1 and 2, which indicates that strategy 1 rediscovers more of
the latent features introduced during dataset augmentation. Strategy 2 incorpo-
rates a limited amount of features and thus leads to a lower yet still considerable
rediscovery rate.

Effect on Quantitative Explainability Metrics. Stevens et al. propose an
approach to quantitatively evaluate the explainability of ML models, particularly
for the process domain. Their approach distinguishes interpretability (measured
by parsimony), as well as faithfulness (measured by monotonicity) [1§].

Parsimony. Parsimony as a property can describe the explainability models’
complexity. Parsimony describes the number of features in the final model and

® https://code.google.com/archive/p/word2vec/


https://code.google.com/archive/p/word2vec/

8 C. Warmuth, and H. Leopold

can quantify the simplicity of a model. For post-hoc explainability analysis using
feature importance, the non-zero feature weights are considered. The maximal
value of the parsimony property is the number of features. A simple (or parsi-
monious) model is characterized by a small parsimony value [I§]. To compare
the parsimony, we take the parsimony for the baseline model, for strategy 1 (as
a sum of both models’ feature counts), and the second-stage model of strategy 2.
We can see a significant difference between the baseline model and strategy 1 in
Figure |5} For strategy 2, the parsimony is only slightly higher than the baseline
and converges against an upper boundary since we limit the number of textual
features n in the second-stage model.

F1-Score Parsimony
L0 pseine ) 3000 { — gaseiine
— Strategy 1 w— Strategy 1
0.9 ::(Er:;egyl 2700 — Strategy 2
— - Onesided prediction
08 2400 —
0.7 © 2100 )
S
0%® & 1800
o >
0.5
u,“.’ S 1500
— £
T 0.4 £ 1200
4
03 & 900
02 600
0.1 300
0.0 o
0.0 0.1 02 03 0.4 05 0.6 0.7 0.8 0.9 1.0 00 01 02 03 04 05 06 0.7 0.8 09 1.0
Dataset Purity Dataset Purity

Fig.5: Fl-score and parsimony for augmented datasets with varying impurity

This implies that strategies 1 and 2 naturally consider substantially more
features than the baseline. For strategy 1, even more features are incorporated
in an explainability analysis with a higher purity of the augmented datasets
and overall better model performance. As parsimony is a metric to determine
how interpretable an explainability analysis is, this consequently means that
models considering textual information (strategy 1 and strategy 2) are more
challenging to interpret. We have to note here that the parsimony of strategy 2
is significantly below the parsimony of strategy 1. Therefore, the interpretability
of strategy 2 is better as we limit the number of features to incorporate by the
parameter n. In their elaboration on feature importance techniques specifically
in the area of NLP, Danilevsky et al. argue in their work that “[t]ext-based
features are inherently more interpretable by humans [...]” [5]. Following this
line of reasoning, it is not entirely correct to assign non-textual and textual
features the same negative impact on interpretability, which puts the results
into relative terms.

Monotonicity. Monotonicity can be used as a metric to describe the faithfulness
between the model and the explanation. Monotonicity describes the faithfulness
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between the feature importance resulting from the explainability analysis and the
feature importance of the task model. For models that require post-hoc explain-
ability, the monotonicity is denoted by the Spearman’s correlation coefficient
between the absolute values of the feature weights for the task model and the
absolute values of the feature weights of the explainability model [I8]. The range
of the monotonicity lies between [—1, 1] and describes the association of rank,
where a perfectly faithful model would have a Monotonicity M of +1. In con-
trast, a less faithful model would score values closer to 0. A negative Spearman
correlation coefficient implies a negative association of rank between the task
model’s feature importance and the explainability model’s feature importance.
For strategy 2 in the second stage and the baseline model, we use XGBoost as a
model of choice, which provides inherent task model-specific feature importance.
While there are multiple ways to assess XGBoost-specific feature importance, we
will focus on the importance by the number of times a feature is used to split
the data across all trees of the decision tree approach. We will not consider the
monotonicity metric for strategy 1 because it is a BERT model for which task
model-specific feature importance cannot be directly obtained.

We see that the monotonicity of the baseline model and the second-stage
model in strategy 2 are almost similar. While there is only a small difference in
monotonicity initially, it disappears with higher dataset purity. The results on
monotonicity showed little to no difference between strategy 2 and the baseline.
This indicates no notable difference in the faithfulness of the explainability anal-
ysis in comparison with the original prediction model. As elaborated before, we
cannot calculate the monotonicity score for strategy 1 due to a lack of task model
feature importance from the BERT model. Therefore, the statement relates to
strategy 2 only.

Effect on Computation Time. For strategy 1, we add up both models’ train-
ing time and the explanation time. For strategy 2, we add the training time of
both stages together for training. At the same time, we only consider the expla-
nation time of the second stage as we only perform an explanation computation
via SHAP for this second stage.

The results show a significant difference between the baseline and strategies
1 and 2 for model training and explainability calculation. For the baseline, the
training is performed quicker than the explanation, while this holds not true
for strategies 1 and 2. The training and explanation of strategy 2 take only
marginally longer than for strategy 1 but are considerably more expensive than
for the baseline. There is also a noteworthy difference between training time and
time for the SHAP calculations. The evaluations showed that the training times
and explainability analyses required significantly more time for the proposed
strategies than for the baseline. Our experiments suggest that for a high number
of features and complex models, the computation for the explainability analysis
far outweighs the training time. We can, however, not draw a conclusion regard-
ing the ratio of training and explainability times, as this is highly dependent on
the model choice and the dataset used for evaluation.
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Prototype. To contemplate the practical implications of using textual data for
explainable predictive monitoring of business processes, we developed a proto-
type illustrating how this might affect users. We differentiate between local ex-
plainability (for individual process instances) and global explainability (overview
over all process instances). This screenshot shows a local analysis of strategy 1
divided into two separate models for the prediction as well as the explanation.
A red color in the individual explainability plots indicates a positive change (to-
wards a loan acceptance); blue color indicates a negative change in the expected
model prediction (towards a loan rejection).

Global Explainability  Local Explainabilty  Model Metrics

Case: 15
~ Non-Textual Model ~ Textual Model
True Label Predicted Label True Label Predicted Label
Rejected Rejected Rejected Rejected
SHAP Waterfall Plot SHAP Force Plot
0
[ w—
E SHAP Text Plot
o1
f(x) base value
- -9.732774 -7.955 -6.580015 7-4.399963-2.622359-0.844755
- repairs medical
2 1o 08 08 s plan to consolidate debt am good borrower because of my

P history and i to being
financially have very stable job and live within my means br
borrower added on recently had ESiSBEIS)and FEdigalbills not
covered by ([SURSRBEappreciate the opportunity to receive
great rate on this loan affording me an alternative to using credit
cards br

Fig. 6: Prototypical implementation of local explainability analysis (Strategy 1)

5 Related Work

Predictive process monitoring techniques have been developed for a wide range
of purposes. The most prominent use cases include the prediction of the process
outcome [T9J22] and the prediction of future process behavior, such as the next
activity [9]. While most techniques build on categorical and numerical features
to accomplish their prediction goal, some also take into account textual data.
For instance, Pegoraro et al. use different strategies such as TF-IDF, Doc2Vec,
or LDA to represent textual information and, in this way, integrate it into an
LSTM architecture with further categorical and numerical data [15]. Teinemaa
et al. perform predictive monitoring with structured and unstructured data by
concatenating the textual features to the feature vector of the non-textual fea-
tures. The text is represented, among others, using bag-of-n-grams, TF-IDF, and
LDA [19]. A recent technique from Cabrera et al. [3] uses contextualized word
embeddings to predict the next activity and the next timestamp of running cases.

Recognizing the need for explainability, several so-called explainable pre-
dictive process monitoring techniques have been developed. These techniques
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mostly rely on model-agnostic approaches such as SHAP [I0/18] or LIME [14].
SHAP unifies existing model explanation techniques (which include six existing
methods, amongst others, LIME [16]). SHAP is a unified measure to calculate
post-hoc feature importance by using the Shapley values of the conditional ex-
pectation function of the original model [I2]. All explainable predictive process
monitoring techniques have in common that they rely on numerical and categor-
ical features only and do not consider textual data. Hence, this paper empirically
demonstrates the potential of explainable predictive process monitoring based
on textual and non-textual data.

6 Conclusion and Future Work

This paper empirically explored the potential of combining textual and non-
textual data in the context of explainable predictive process monitoring. To
this end, we conducted extensive experiments on a synthetic dataset we cre-
ated for this purpose. We found that using textual data alongside non-textual
data requires more computation time but can lead to better predictions even
when the quality of the textual data is poor. While the explainability metrics
might decrease slightly depending on the chosen strategy, textual information
is inherently more interpretable by humans, which allows for a more human-
understandable explanation. Therefore, we conclude that combining textual and
non-textual data in the context of explainable predictive process monitoring is
a promising approach.

As for future work, we see two main directions. First, after an explainability
analysis, it is unclear whether a variable is merely correlated with the outcome
or causally related. Therefore, future work should combine the explainability
analysis with a subsequent causality analysis. Second, it would be interesting to
relate the results of an explainability analysis to real interventions.
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